This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115287 #21 Feb 16 2025 08:33:00 %S A115287 6,3,8,1,0,3,7,4,3,3,6,5,1,1,0,7,7,8,5,2,2,4,0,7,3,8,5,5,1,9,8,8,0,3, %T A115287 1,4,4,4,3,9,3,3,8,4,1,2,8,9,0,2,7,6,4,0,4,1,9,4,8,3,1,9,3,6,5,0,3,4, %U A115287 2,1,0,1,0,5,6,7,6,0,0,8,3,0,4,1,0,0,1,8,5,2,5,1,0,5,2,7,4,8,3,3,1,5,7,0,9 %N A115287 Decimal expansion of 1/(1+LambertW(1)). %H A115287 G. C. Greubel, <a href="/A115287/b115287.txt">Table of n, a(n) for n = 0..10000</a> %H A115287 Cristina B. Corcino, Roberto B. Corcino and István Mező, <a href="https://doi.org/10.1007/s00010-018-0559-2">Continued fraction expansions for the Lambert W function</a>, Aequationes mathematicae, Vol. 93, No. 2 (2019), pp. 485-49. %H A115287 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/45745/interesting-integral-related-to-the-omega-constant-lambert-w-function">Interesting integral related to the Omega Constant/Lambert W Function</a>, 2011. %H A115287 Victor H. Moll, <a href="https://www.experimentalmath.info/maa-course/Moll-MAA.pdf">Some Questions in the Evaluation of Definite Integrals</a>, MAA Short Course, San Antonio, TX, January 2006. %H A115287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OmegaConstant.html">Omega Constant</a>. %H A115287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DefiniteIntegral.html">Definite Integral</a>. %F A115287 Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - _Amiram Eldar_, Jul 04 2021 %e A115287 0.63810374336511077852... %t A115287 RealDigits[1/(1 + ProductLog[1]), 10, 105] // First (* _Jean-François Alcover_, Feb 07 2013 *) %o A115287 (PARI) 1/(1 + lambertw(1)) \\ _G. C. Greubel_, Nov 05 2017 %Y A115287 Cf. A006153, A030178, A097172, A097173, A097174, A265953, A276231, A302399. %K A115287 nonn,cons,easy %O A115287 0,1 %A A115287 _Eric W. Weisstein_, Jan 19 2006