cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115288 a(n) is the smallest number representable in exactly n ways as a sum of 2 triangular numbers and one square (each of them >= 0).

Original entry on oeis.org

0, 1, 4, 7, 10, 16, 22, 25, 64, 46, 70, 67, 92, 85, 160, 115, 106, 136, 200, 157, 190, 172, 256, 235, 568, 277, 370, 337, 400, 367, 340, 550, 556, 442, 1102, 445, 472, 631, 610, 535, 682, 697, 652, 1075, 956, 850, 1984, 865, 1172, 997, 862, 1081, 1462, 1135, 1060
Offset: 1

Views

Author

Giovanni Resta, Jan 19 2006

Keywords

Examples

			a(4)=7 since 7 can be expressed in 4 ways, 7= T(3)+T(1)+0^2 = T(3)+T(0)+1^2 = T(2)+T(0)+2^2 = T(2)+T(2)+1^2 and none of the numbers from 0 to 6 can be expressed in 4 ways.
		

Crossrefs

Programs

  • Maple
    a := [seq(0,n=0..100)] ;
    for k from 0 do
        a330861 := A330861(k) ;
        if a330861 <= nops(a) then
            if op(a330861,a) = 0 then
                a := subsop(a330861=k,a) ;
                print(a) ;
            end if;
        end if;
        if not member(0,[op(2..nops(a),a)]) then
            break;
        end if;
    end do: # R. J. Mathar, Apr 28 2020
  • Mathematica
    V=Table[0, {i, 2500}]; T[n]:=n(n+1)/2; Do[a=T[i]+T[j]+k^2;If[a<2500, V[[a+1]]++ ], {i, 0, 71}, {j, 0, i}, {k, 0, 50}]; Table[Position[V, z][[1, 1]]-1, {z, 60}]