cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115313 a(n) = gcd(Lucas(n)+1, Fibonacci(n)+1).

This page as a plain text file.
%I A115313 #16 Sep 08 2022 08:45:23
%S A115313 2,2,1,4,6,1,2,2,7,4,10,1,18,2,13,4,94,1,34,2,123,4,178,1,322,2,233,4,
%T A115313 1686,1,610,2,2207,4,3194,1,5778,2,4181,4,30254,1,10946,2,39603,4,
%U A115313 57314,1,103682,2,75025,4,542886,1,196418,2,710647,4,1028458,1
%N A115313 a(n) = gcd(Lucas(n)+1, Fibonacci(n)+1).
%C A115313 Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1)+Lucas(n-2). See A000032.
%C A115313 a(n) is prime for n = 1, 2, 7, 8, 9, 14, 15, 20, 26, 27, 32, 33, 38, 44, 50, 56, 62, 68, 74, 80, 86, 87, ... - _Vincenzo Librandi_, Dec 24 2015
%e A115313 a(15) = 13 since F(15) + 1 = 13*47 and L(15) + 1 = 3*5*7*13.
%t A115313 lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]+1, Fibonacci[i]+1], {i, 60}]
%o A115313 (Magma) [Gcd(Lucas(n)+1, Fibonacci(n)+1): n in [1..60]]; // _Vincenzo Librandi_, Dec 24 2015
%o A115313 (PARI) a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)+1,fibonacci(n)+1); \\ _Altug Alkan_, Dec 24 2015
%Y A115313 Cf. A000032, A000045, A111956, A115311, A115312, A115314.
%K A115313 nonn,easy
%O A115313 1,1
%A A115313 _Giovanni Resta_, Jan 20 2006