This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115322 #31 Aug 07 2025 03:08:20 %S A115322 1,0,2,1,0,4,0,4,0,8,1,0,12,0,16,0,6,0,32,0,32,1,0,24,0,80,0,64,0,8,0, %T A115322 80,0,192,0,128,1,0,40,0,240,0,448,0,256,0,10,0,160,0,672,0,1024,0, %U A115322 512,1,0,60,0,560,0,1792,0,2304,0,1024,0,12,0,280,0,1792,0,4608,0,5120,0,2048 %N A115322 Triangle of coefficients of Pell polynomials. %C A115322 Aside from signs, same as A053117. %C A115322 Row n gives the coefficients in the expansion of the Alexander-Conway polynomial for the barrier-free Celtic link CK_4^(2n). - _Franck Maminirina Ramaharo_, Aug 06 2025 %H A115322 Jonathan L. Gross and Thomas W. Tucker, <a href="https://doi.org/10.1007/s00454-010-9257-0">A Celtic Framework for Knots and Links</a>, Discrete & Computational Geometry 46 (2011), 86-99. %H A115322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellPolynomial.html">Pell Polynomial</a> %F A115322 G.f. for n-th row is Fibonacci(n, 2*x). %F A115322 From _Franck Maminirina Ramaharo_, Aug 06 2025: (Start) %F A115322 Row n = coefficients in the expansion of ((x + srt(x^2 + 1))^n - (x - sqrt(x^2 + 1))^n)/(2*sqrt(x^2 + 1)). %F A115322 T(n,k) = 0 if n == k (mod 2) else T(n,k) = (2^k)*binomial((n + k - 1)/2, k). %F A115322 G.f.: y/(1 - 2 x*y - y^2). %F A115322 (End) %e A115322 1, 2*x, 1 + 4*x^2, 4*x + 8*x^3, 1 + 12*x^2 + 16*x^4, ... %e A115322 Triangle begins: %e A115322 [n\k] 0 1 2 3 4 5 6 7 8 9 10 %e A115322 ---------------------------------------------------------- %e A115322 [1 ] 1; %e A115322 [2 ] 0, 2; %e A115322 [3 ] 1, 0, 4; %e A115322 [4 ] 0, 4, 0, 8; %e A115322 [5 ] 1, 0, 12, 0, 16; %e A115322 [6 ] 0, 6, 0, 32, 0, 32; %e A115322 [7 ] 1, 0, 24, 0, 80, 0, 64; %e A115322 [8 ] 0, 8, 0, 80, 0, 192, 0, 128; %e A115322 [9 ] 1, 0, 40, 0, 240, 0, 448, 0, 256; %e A115322 [10] 0, 10, 0, 160, 0, 672, 0, 1024, 0, 512; %e A115322 [11] 1, 0, 60, 0, 560, 0, 1792, 0, 2304, 0, 1024; %e A115322 ... - _Franck Maminirina Ramaharo_, Aug 06 2025 %p A115322 A115322 := (n, k) -> ifelse(irem(n - k, 2) = 0, 0, binomial((n + k - 1)/2, k)*2^k); %p A115322 seq(print(seq(A115322(n, k), k = 0..n-1)), n = 1..10); # _Peter Luschny_, Aug 06 2025 %t A115322 Flatten[Table[CoefficientList[Fibonacci[n, 2 x], x], {n, 0, 20}]] (* _Emanuele Munarini_, Dec 01 2017 *) %o A115322 (Maxima) %o A115322 T(n, k) := if mod(n - k, 2) = 0 then 0 else binomial((n + k - 1)/2, k)*2^k$ %o A115322 create_list(T(n, k), n, 1, 10, k, 0, n - 1); /* _Franck Maminirina Ramaharo_, Aug 06 2025 */ %Y A115322 Cf. A053117, A049310, A000129 (row sums). %K A115322 nonn,tabl %O A115322 1,3 %A A115322 _Eric W. Weisstein_, Jan 20 2006