This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115343 #51 Aug 31 2024 18:04:37 %S A115343 223092870,281291010,300690390,340510170,358888530,363993630, %T A115343 380570190,397687290,406816410,417086670,434444010,455885430, %U A115343 458948490,481410930,485555070,497668710,504894390,512942430,514083570,531990690,538047510,547777230,551861310 %N A115343 Products of 9 distinct primes. %H A115343 David A. Corneth, <a href="/A115343/b115343.txt">Table of n, a(n) for n = 1..10000</a> (first 1045 terms from Vincenzo Librandi and Chai Wah Wu) %e A115343 514083570 is in the sequence as it is equal to 2*3*5*7*11*13*17*19*53. %p A115343 N:= 10^9: # to get all terms < N %p A115343 n0:= mul(ithprime(i),i=1..8): %p A115343 Primes:= select(isprime,[$1..floor(N/n0)]): %p A115343 nPrimes:= nops(Primes): %p A115343 for i from 1 to 9 do %p A115343 for j from 1 to nPrimes do %p A115343 M[i,j]:= convert(Primes[1..min(j,i)],`*`); %p A115343 od od: %p A115343 A:= {}: %p A115343 for i9 from 9 to nPrimes do %p A115343 m9:= Primes[i9]; %p A115343 for i8 in select(t -> M[7,t-1]*Primes[t]*m9 <= N, [$8..i9-1]) do %p A115343 m8:= m9*Primes[i8]; %p A115343 for i7 in select(t -> M[6,t-1]*Primes[t]*m8 <= N, [$7..i8-1]) do %p A115343 m7:= m8*Primes[i7]; %p A115343 for i6 in select(t -> M[5,t-1]*Primes[t]*m7 <= N, [$6..i7-1]) do %p A115343 m6:= m7*Primes[i6]; %p A115343 for i5 in select(t -> M[4,t-1]*Primes[t]*m6 <= N, [$5..i6-1]) do %p A115343 m5:= m6*Primes[i5]; %p A115343 for i4 in select(t -> M[3,t-1]*Primes[t]*m5 <= N, [$4..i5-1]) do %p A115343 m4:= m5*Primes[i4]; %p A115343 for i3 in select(t -> M[2,t-1]*Primes[t]*m4 <= N, [$3..i4-1]) do %p A115343 m3:= m4*Primes[i3]; %p A115343 for i2 in select(t -> M[1,t-1]*Primes[t]*m3 <= N, [$2..i3-1]) do %p A115343 m2:= m3*Primes[i2]; %p A115343 for i1 in select(t -> Primes[t]*m2 <= N, [$1..i2-1]) do %p A115343 A:= A union {m2*Primes[i1]}; %p A115343 od od od od od od od od od: %p A115343 A; # _Robert Israel_, Sep 02 2014 %t A115343 Module[{n=6*10^8,k},k=PrimePi[n/Times@@Prime[Range[8]]];Select[ Union[ Times@@@ Subsets[Prime[Range[k]],{9}]],#<=n&]](* _Harvey P. Dale_ with suggestions from _Jean-François Alcover_, Sep 03 2014 *) %t A115343 n = 10^9; n0 = Times @@ Prime[Range[8]]; primes = Select[Range[Floor[n/n0]], PrimeQ]; nPrimes = Length[primes]; Do[M[i, j] = Times @@ primes[[1 ;; Min[j, i]]], {i, 1, 9}, {j, 1, nPrimes}]; A = {}; %t A115343 Do[m9 = primes[[i9]]; %t A115343 Do[m8 = m9*primes[[i8]]; %t A115343 Do[m7 = m8*primes[[i7]]; %t A115343 Do[m6 = m7*primes[[i6]]; %t A115343 Do[m5 = m6*primes[[i5]]; %t A115343 Do[m4 = m5*primes[[i4]]; %t A115343 Do[m3 = m4*primes[[i3]]; %t A115343 Do[m2 = m3*primes[[i2]]; %t A115343 Do[A = A ~Union~ {m2*primes[[i1]]}, %t A115343 {i1, Select[Range[1, i2-1], primes[[#]]*m2 <= n &]}], %t A115343 {i2, Select[Range[2, i3-1], M[1, #-1]*primes[[#]]*m3 <= n &]}], %t A115343 {i3, Select[Range[3, i4-1], M[2, #-1]*primes[[#]]*m4 <= n &]}], %t A115343 {i4, Select[Range[4, i5-1], M[3, #-1]*primes[[#]]*m5 <= n &]}], %t A115343 {i5, Select[Range[5, i6-1], M[4, #-1]*primes[[#]]*m6 <= n &]}], %t A115343 {i6, Select[Range[6, i7-1], M[5, #-1]*primes[[#]]*m7 <= n &]}], %t A115343 {i7, Select[Range[7, i8-1], M[6, #-1]*primes[[#]]*m8 <= n &]}], %t A115343 {i8, Select[Range[8, i9-1], M[7, #-1]*primes[[#]]*m9 <= n &]}], %t A115343 {i9, 9, nPrimes}]; %t A115343 A (* _Jean-François Alcover_, Sep 03 2014, translated and adapted from Robert Israel's Maple program *) %o A115343 (Python) %o A115343 from operator import mul %o A115343 from functools import reduce %o A115343 from sympy import nextprime, sieve %o A115343 from itertools import combinations %o A115343 n = 190 %o A115343 m = 9699690*nextprime(n-1) %o A115343 A115343 = [] %o A115343 for x in combinations(sieve.primerange(1,n),9): %o A115343 y = reduce(mul,(d for d in x)) %o A115343 if y < m: %o A115343 A115343.append(y) %o A115343 A115343 = sorted(A115343) # _Chai Wah Wu_, Sep 02 2014 %o A115343 (Python) %o A115343 from math import prod, isqrt %o A115343 from sympy import primerange, integer_nthroot, primepi %o A115343 def A115343(n): %o A115343 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A115343 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,9))) %o A115343 def bisection(f,kmin=0,kmax=1): %o A115343 while f(kmax) > kmax: kmax <<= 1 %o A115343 while kmax-kmin > 1: %o A115343 kmid = kmax+kmin>>1 %o A115343 if f(kmid) <= kmid: %o A115343 kmax = kmid %o A115343 else: %o A115343 kmin = kmid %o A115343 return kmax %o A115343 return bisection(f) # _Chai Wah Wu_, Aug 31 2024 %o A115343 (PARI) is(n)=omega(n)==9 && bigomega(n)==9 \\ _Hugo Pfoertner_, Dec 18 2018 %Y A115343 Cf. A000040, A006881, A007304, A046386, A046387, A067885, A123321, A123322, A115343, A281222. %K A115343 nonn,easy %O A115343 1,1 %A A115343 _Jonathan Vos Post_, Mar 06 2006 %E A115343 Corrected and extended by _Don Reble_, Mar 09 2006 %E A115343 More terms and corrected b-file from _Chai Wah Wu_, Sep 02 2014