cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115344 Numerators of asymptotic expansion of first root of Ziegler's cubic in an imaginary quadratic field.

This page as a plain text file.
%I A115344 #41 Dec 13 2024 09:40:43
%S A115344 -1,1,-1,3,-6,18,-45,136,-378,1156,-3405,10549,-32175,100915,-314834,
%T A115344 998323,-3163683,10127020,-32462265,104751043,-338742887,1100559573,
%U A115344 -3583933846,11711868458,-38358103030,125974533997,-414566089320,1367353737806,-4518185596293
%N A115344 Numerators of asymptotic expansion of first root of Ziegler's cubic in an imaginary quadratic field.
%H A115344 Vaclav Kotesovec, <a href="/A115344/b115344.txt">Table of n, a(n) for n = 0..500</a>
%H A115344 Volker Ziegler, <a href="http://finanz.math.tu-graz.ac.at/~ziegler/Papers/CubicsImaginary.pdf">On a family of cubics over imaginary quadratic fields</a>, Periodica Mathematica Hungarica, Vol. 51 (2) (2005), pp. 109-130, DOI: 10.1007/s10998-005-0032-6.
%F A115344 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
%F A115344 (1) x = -(1+x)*A(x) - A(x)^2 + x*A(x)^3. - _Paul D. Hanna_, May 30 2014
%F A115344 (2) x = -A(x)*(1 + A(x)) / (1 + A(x) - A(x)^3). - _Paul D. Hanna_, May 31 2014
%F A115344 (3) A(x) = -x/Series_Reversion(x*(1 - Series_Reversion(x/(1 - 2*x + 3*x^2 - x^3)))). - _Paul D. Hanna_, May 31 2014
%F A115344 Recurrence: n*(n+1)*(28*n^2 - 94*n + 51)*a(n) = -4*n*(14*n^3 - 54*n^2 + 73*n - 48)*a(n-1) + (n-3)*(140*n^3 - 330*n^2 + 19*n + 216)*a(n-2) + 6*(n-3)*(28*n^3 - 108*n^2 + 57*n + 118)*a(n-3) + 23*(n-4)*(n-3)*(28*n^2 - 38*n - 15)*a(n-4). - _Vaclav Kotesovec_, May 30 2014
%F A115344 a(n) ~ (-1)^(n+1) * sqrt(s*(s-1)/(3*r*s-1)) / (2*sqrt(Pi) * n^(3/2)* r^n), where r = 2/(1+sqrt(13+16*sqrt(2))) = 0.2869905464691794898..., s = 1/2 + 1/sqrt(2) + 1/2*sqrt(2*sqrt(2)-1) = 1.88320350591352586... . - _Vaclav Kotesovec_, May 30 2014
%F A115344 a(n) = Sum_{k=0..n}(binomial(n,k)*Sum_{i=0..n-k-1}(2^(k-i)*binomial(k,i)*(-1)^(i+k)*binomial(2*n-i-2*k-2,n-k-1)))/n, n>0, a(0)=-1. - _Vladimir Kruchinin_, Mar 15 2016
%F A115344 a(n) = (1/n) * Sum_{k=0..n} (-1)^(n-k-1) * binomial(n,k) * binomial(2*n-3*k,n-k-1) for n > 0. - _Seiichi Manyama_, Dec 13 2024
%e A115344 -1 + 1/t - 1/t^2 + 3/t^3 - 6/t^4 + 18/t^5 - 45/t^6 + 136/t^7 - 378/t^8...
%t A115344 nmax=30; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=-1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[-(1+x)*AGF-AGF^2+x*AGF^3-x,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{-1,aa}] (* _Vaclav Kotesovec_, May 30 2014 *)
%t A115344 CoefficientList[-x/InverseSeries[x*(1-InverseSeries[Series[x/(1-2*x+3*x^2-x^3),{x,0,20}],x]),x],x] (* _Vaclav Kotesovec_, May 31 2014 after _Paul D. Hanna_ *)
%o A115344 (PARI) {a(n)=polcoeff(-x/serreverse(x*(1-serreverse(x/(1 - 2*x + 3*x^2 - x^3 +x*O(x^n))))), n)}
%o A115344 for(n=0,30,print1(a(n),", ")); \\ _Paul D. Hanna_, May 31 2014
%o A115344 (PARI) a(n) = if(n==0, -1, sum(k=0, n, (-1)^(n-k-1)*binomial(n, k)*binomial(2*n-3*k, n-k-1))/n); \\ _Seiichi Manyama_, Dec 13 2024
%o A115344 (Maxima)
%o A115344 a(n):=if n=0 then -1 else sum(binomial(n,k)*sum(2^(k-i)*binomial(k,i)*(-1)^(i+k)*binomial(2*n-i-2*k-2,n-k-1),i,0,n-k-1),k,0,n)/n; /* _Vladimir Kruchinin_, Mar 15 2016 */
%K A115344 sign
%O A115344 0,4
%A A115344 _Jonathan Vos Post_, Mar 06 2006
%E A115344 More terms from _Vaclav Kotesovec_, May 30 2014