This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115361 #38 Jul 16 2025 17:10:06 %S A115361 1,1,1,0,0,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,1,1,0,1,0,0, %T A115361 0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0, %U A115361 1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1 %N A115361 Inverse of matrix (1,x)-(x,x^2) (expressed in Riordan array notation). %C A115361 Row sums are the 'ruler function' A001511. Columns are stretched Fredholm-Rueppel sequences (A036987). Inverse is A115359. %C A115361 Eigensequence of triangle A115361 = A018819 starting with offset 1: (1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, ...). - _Gary W. Adamson_, Nov 21 2009 %C A115361 From _Gary W. Adamson_, Nov 27 2009: (Start) %C A115361 A115361 * [1, 2, 3, ...] = A129527 = (1, 3, 3, 7, 5, 9, 7, 15, ...). %C A115361 (A115361)^(-1) * [1, 2, 3, ...] = A115359 * [1, 2, 3, ...] = A026741 starting /Q (1, 1, 3, 2, 5, 3, 7, 4, 9, ...). (End) %C A115361 This is the lower-left triangular part of the inverse of the infinite matrix A_{ij} = [i=j] - [i=2j], its upper-right part (above / right to the diagonal) being zero. The n-th row has 1 in column n/2^i, i = 0, 1, ... as long as this is an integer. - _M. F. Hasler_, May 13 2018 %C A115361 The rows are the reversed binary expansions of A127804. - _Tilman Piesk_, Jun 10 2025 %H A115361 Tilman Piesk, <a href="https://commons.wikimedia.org/wiki/File:Sequence_A127804_from_binary_triangle.svg">Illustration of first 32 rows</a>. %F A115361 Number triangle whose k-th column has g.f. x^k*sum{j>=0} x^((2^j-1)*(k+1)). %F A115361 T(n,k) = A209229((n+1)/(k+1)) for k+1 divides n+1, T(n,k) = 0 otherwise. - _Andrew Howroyd_, Aug 05 2018 %e A115361 Triangle begins: %e A115361 1; %e A115361 1,1; %e A115361 0,0,1; %e A115361 1,1,0,1; %e A115361 0,0,0,0,1; %e A115361 0,0,1,0,0,1; %e A115361 0,0,0,0,0,0,1; %e A115361 1,1,0,1,0,0,0,1; %e A115361 0,0,0,0,0,0,0,0,1; %e A115361 0,0,0,0,1,0,0,0,0,1; %e A115361 0,0,0,0,0,0,0,0,0,0,1; %p A115361 A115361 := proc(n,k) %p A115361 for j from 0 do %p A115361 if k+(2*j-1)*(k+1) > n then %p A115361 return 0 ; %p A115361 elif k+(2^j-1)*(k+1) = n then %p A115361 return 1 ; %p A115361 end if; %p A115361 end do; %p A115361 end proc: # _R. J. Mathar_, Jul 14 2012 %t A115361 (*recurrence*) %t A115361 Clear[t] %t A115361 t[1, 1] = 1; %t A115361 t[n_, k_] := %t A115361 t[n, k] = %t A115361 If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}], %t A115361 If[Mod[n, k] == 0, t[n/k, 1], 0], 0] %t A115361 Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 14}]] (* _Mats Granvik_, Jun 26 2014 *) %o A115361 (PARI) tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = T^(-1); for (n=1, nn, for (k=1, n, print1(Ti[n, k], ", ");); print(););} \\ _Michel Marcus_, Mar 28 2015 %o A115361 (PARI) A115361_row(n,v=vector(n))={until(bittest(n,0)||!n\=2,v[n]=1);v} \\ Yields the n-th row (of length n). - _M. F. Hasler_, May 13 2018 %o A115361 (PARI) T(n,k)={if(n%k, 0, my(e=valuation(n/k,2)); n/k==1<<e)} %o A115361 for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ _Andrew Howroyd_, Aug 03 2018 %o A115361 (Python) %o A115361 # translation of Maple code by R. J. Mathar %o A115361 def a115361(n, k): %o A115361 j = 0 %o A115361 while True: %o A115361 if k + (2*j - 1) * (k + 1) > n: %o A115361 return 0 %o A115361 elif k + (2**j - 1) * (k + 1) == n: %o A115361 return 1 %o A115361 else: %o A115361 j += 1 # _Tilman Piesk_, Jun 10 2025 %Y A115361 Cf. A016741, A018819, A129527. - _Gary W. Adamson_, Nov 21 2009 %Y A115361 Cf. A036987, A209229, A127804. %K A115361 easy,nonn,tabl %O A115361 0,1 %A A115361 _Paul Barry_, Jan 21 2006