This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115369 #28 Jul 11 2025 11:22:56 %S A115369 3,8,3,1,7,0,5,9,7,0,2,0,7,5,1,2,3,1,5,6,1,4,4,3,5,8,8,6,3,0,8,1,6,0, %T A115369 7,6,6,5,6,4,5,4,5,2,7,4,2,8,7,8,0,1,9,2,8,7,6,2,2,9,8,9,8,9,9,1,8,8, %U A115369 3,9,3,0,9,5,1,9,0,1,1,4,7,0,2,1,4,1,1,2,8,7,4,7,5,7,4,2,3,1,2,6,7,2,4,4,7 %N A115369 Decimal expansion of first zero of BesselJ(1,z). %C A115369 Also the first root of the sinc(2,x) function, that is, the radial component of the 2D Fourier transform of a 2-dimensional unit disc. - _Stanislav Sykora_, Nov 14 2013 %C A115369 Also the first root of the derivative of BesselJ_0. - _Jean-François Alcover_, Jul 01 2015 %H A115369 Stanislav Sykora, <a href="http://dx.doi.org/10.3247/SL2Math07.002">K-Space Images of n-Dimensional Spheres and Generalized Sinc Functions</a> %H A115369 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a> %H A115369 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A115369 3.8317059702075123156... %t A115369 BesselJZero[1, 1] // N[#, 105]& // RealDigits // First (* _Jean-François Alcover_, Feb 06 2013 *) %o A115369 (PARI) solve(x=3,4,besselj(1,x)) \\ _Charles R Greathouse IV_, Feb 19 2014 %o A115369 (PARI) besseljzero(1) \\ _Charles R Greathouse IV_, Aug 06 2022 %Y A115369 Cf. A115368, A115370, A115371, A115372, A115373. %Y A115369 Cf. A103365, A103366, A238390, A180874. %K A115369 nonn,cons %O A115369 1,1 %A A115369 _Eric W. Weisstein_, Jan 21 2006