cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115409 Inverse integer permutation of A115408.

This page as a plain text file.
%I A115409 #16 Sep 20 2021 09:37:22
%S A115409 1,5,4,7,6,2,17,16,12,10,20,19,15,13,3,43,42,38,36,26,23,51,50,46,44,
%T A115409 34,31,8,105,104,100,98,88,85,62,54,114,113,109,107,97,94,71,63,9
%N A115409 Inverse integer permutation of A115408.
%C A115409 Seen as a triangle read by rows T(n,k) = a(n*(n-1)/2+k) = A024431(n)-A024431(k-1), 1<=k<=n.
%C A115409 T(n,1) = A024431(n)-1; T(n,n) = A247414(n-1). - _Reinhard Zumkeller_, Sep 16 2014
%H A115409 Reinhard Zumkeller, <a href="/A115409/b115409.txt">>Rows n = 1..125 of triangle, flattened</a>
%H A115409 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A115409 Triangle begins:
%e A115409 1;
%e A115409 5, 4;
%e A115409 7, 6, 2;
%e A115409 17, 16, 12, 10;
%e A115409 20, 19, 15, 13, 3;
%e A115409 ...
%t A115409 nmax = 9;
%t A115409 differenceQ[seq_, x_] := Module[{r = False}, Do[If[x==seq[[k]] - seq[[j]], r = True; Break[]], {j, 1, Length[seq]}, {k, 1, Length[seq]}]; r];
%t A115409 seq[1] = {1, 2};
%t A115409 seq[i_] := seq[i] = Module[{j, k}, k = Max[seq[i-1]]; j = First[Select[ Range[k], !differenceQ[seq[i-1], #]&, 1]]; Union[seq[i-1], {2k+2, 2k+2+j}]];
%t A115409 A024431 = seq[nmax];
%t A115409 T[n_, k_] := A024431[[n+1]] -  A024431[[k]];
%t A115409 Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 20 2021 *)
%o A115409 (Haskell)
%o A115409 import Data.List (inits)
%o A115409 a115409 n k = a115409_tabl !! (n-1) !! (k-1)
%o A115409 a115409_row n = a115409_tabl !! (n-1)
%o A115409 a115409_tabl = map f $ drop 2 $ inits a024431_list where
%o A115409    f xs = reverse $ map (z -) zs where (z:zs) = reverse xs
%o A115409 a115409_list = concat a115409_tabl
%o A115409 -- _Reinhard Zumkeller_, Sep 16 2014
%Y A115409 Cf. A024431, A115408, A247414.
%K A115409 nonn,tabl,look
%O A115409 1,2
%A A115409 _Reinhard Zumkeller_, Jan 22 2006