This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115409 #16 Sep 20 2021 09:37:22 %S A115409 1,5,4,7,6,2,17,16,12,10,20,19,15,13,3,43,42,38,36,26,23,51,50,46,44, %T A115409 34,31,8,105,104,100,98,88,85,62,54,114,113,109,107,97,94,71,63,9 %N A115409 Inverse integer permutation of A115408. %C A115409 Seen as a triangle read by rows T(n,k) = a(n*(n-1)/2+k) = A024431(n)-A024431(k-1), 1<=k<=n. %C A115409 T(n,1) = A024431(n)-1; T(n,n) = A247414(n-1). - _Reinhard Zumkeller_, Sep 16 2014 %H A115409 Reinhard Zumkeller, <a href="/A115409/b115409.txt">>Rows n = 1..125 of triangle, flattened</a> %H A115409 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A115409 Triangle begins: %e A115409 1; %e A115409 5, 4; %e A115409 7, 6, 2; %e A115409 17, 16, 12, 10; %e A115409 20, 19, 15, 13, 3; %e A115409 ... %t A115409 nmax = 9; %t A115409 differenceQ[seq_, x_] := Module[{r = False}, Do[If[x==seq[[k]] - seq[[j]], r = True; Break[]], {j, 1, Length[seq]}, {k, 1, Length[seq]}]; r]; %t A115409 seq[1] = {1, 2}; %t A115409 seq[i_] := seq[i] = Module[{j, k}, k = Max[seq[i-1]]; j = First[Select[ Range[k], !differenceQ[seq[i-1], #]&, 1]]; Union[seq[i-1], {2k+2, 2k+2+j}]]; %t A115409 A024431 = seq[nmax]; %t A115409 T[n_, k_] := A024431[[n+1]] - A024431[[k]]; %t A115409 Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 20 2021 *) %o A115409 (Haskell) %o A115409 import Data.List (inits) %o A115409 a115409 n k = a115409_tabl !! (n-1) !! (k-1) %o A115409 a115409_row n = a115409_tabl !! (n-1) %o A115409 a115409_tabl = map f $ drop 2 $ inits a024431_list where %o A115409 f xs = reverse $ map (z -) zs where (z:zs) = reverse xs %o A115409 a115409_list = concat a115409_tabl %o A115409 -- _Reinhard Zumkeller_, Sep 16 2014 %Y A115409 Cf. A024431, A115408, A247414. %K A115409 nonn,tabl,look %O A115409 1,2 %A A115409 _Reinhard Zumkeller_, Jan 22 2006