cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115457 Number of monic irreducible polynomials of degree n in GF(2)[x,y].

This page as a plain text file.
%I A115457 #17 Jun 09 2015 14:56:14
%S A115457 1,6,35,694,26089,1862994,253247715,66799608630,34698378752226,
%T A115457 35781375988234520,73534241823793715433,301714422751259316744750,
%U A115457 2473763407036784492590791565,40547483778956508623734286010210
%N A115457 Number of monic irreducible polynomials of degree n in GF(2)[x,y].
%H A115457 Max Alekseyev, <a href="http://www.microsofttranslator.com/bv.aspx?from=&amp;to=en&amp;a=http://dxdy.ru/post7034.html">Formula for the number of monic irreducible polynomials in a finite field</a>
%H A115457 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI scripts for various problems</a>
%H A115457 Arnaud Bodin, <a href="http://arxiv.org/abs/0706.0157">Number of irreducible polynomials in several variables over finite fields</a>, Amer. Math. Monthly, 115 (2008), 653-660.
%H A115457 J. von zur Gathen, K. Ziegler, <a href="http://arxiv.org/abs/1407.2970">Survey on counting special types of polynomials</a>, arXiv preprint arXiv:1407.2970, 2014
%H A115457 Konstantin Ziegler, <a href="http://hss.ulb.uni-bonn.de/2015/3981/3981.pdf">Counting Classes of Special Polynomials</a>, Doctoral Dissertation, University of Bonn, June 2014.
%Y A115457 Cf. A122743.
%Y A115457 Cf. A115458-A115505.
%K A115457 nonn
%O A115457 0,2
%A A115457 _Max Alekseyev_, Jan 16 2006