This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115465 #21 Apr 20 2023 03:15:22 %S A115465 1,30,3410,2330240,7549603600,118965950703744,9309505329218297280, %T A115465 3637689729211851543816960,7105314552536912564123328420000, %U A115465 69388718760088702173445263653542192000 %N A115465 Number of monic irreducible polynomials of degree n in GF(5)[x,y]. %H A115465 Max Alekseyev, <a href="http://translate.google.com/translate?hl=en&sl=ru&tl=en&u=http%3A%2F%2Fdxdy.ru%2Ftopic1165.html">Formula for the number of monic irreducible polynomials in a finite field</a> %H A115465 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI scripts for various problems</a> %H A115465 J. von zur Gathen and K. Ziegler, <a href="http://arxiv.org/abs/1407.2970">Survey on counting special types of polynomials</a>, arXiv preprint arXiv:1407.2970 [math.AC], 2014. %H A115465 Xiang-dong Hou and Gary L. Mullen, <a href="http://arxiv.org/abs/0811.3986">Number of Irreducible Polynomials and Pairs of Relatively Prime Polynomials in Several Variables over Finite Fields</a>, arXiv:0811.3986 [math.NT], 2008. %H A115465 Konstantin Ziegler, <a href="http://hss.ulb.uni-bonn.de/2015/3981/3981.pdf">Counting Classes of Special Polynomials</a>, Doctoral Dissertation, University of Bonn, June 2014. %Y A115465 Cf. A115457-A115505. %K A115465 nonn %O A115465 0,2 %A A115465 _Max Alekseyev_, Jan 16 2006