cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115472 Number of monic irreducible polynomials of degree n in GF(7)[x1,x2,x3,x4,x5].

This page as a plain text file.
%I A115472 #15 Jun 09 2015 15:00:32
%S A115472 1,19607,93090977154967365,
%T A115472 35264602300404231939621558472618564737091095360,
%U A115472 5060597439447658829626913883473719626980805160390472618010906865462338153969428645843757564540589437993663
%N A115472 Number of monic irreducible polynomials of degree n in GF(7)[x1,x2,x3,x4,x5].
%H A115472 Max Alekseyev, <a href="http://translate.google.com/translate?hl=en&amp;sl=ru&amp;tl=en&amp;u=http%3A%2F%2Fdxdy.ru%2Ftopic1165.html">Formula for the number of monic irreducible polynomials in a finite field</a>
%H A115472 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI scripts for various problems</a>
%H A115472 J. von zur Gathen, K. Ziegler, <a href="http://arxiv.org/abs/1407.2970">Survey on counting special types of polynomials</a>, arXiv preprint arXiv:1407.2970, 2014
%H A115472 Konstantin Ziegler, <a href="http://hss.ulb.uni-bonn.de/2015/3981/3981.pdf">Counting Classes of Special Polynomials</a>, Doctoral Dissertation, University of Bonn, June 2014.
%Y A115472 Cf. A115457-A115505.
%K A115472 nonn
%O A115472 0,2
%A A115472 _Max Alekseyev_, Jan 16 2006