This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115521 #23 Feb 16 2025 08:33:00 %S A115521 1,5,1,9,0,9,6,6,3,3,4,4,2,1,9,8,5,3,1,4,5,8,0,0,7,3,4,5,8,6,8,4,1,1, %T A115521 5,6,8,8,4,3,8,9,0,3,4,3,2,1,7,0,8,4,2,3,1,6,6,8,1,6,3,3,7,2,1,9,8,7, %U A115521 0,6,7,2,4,3,4,2,7,1,2,2,7,4,6,1,5,4,2,3,5,0,5,8,3,1,8,6,2,5,3,6,8,5,9,2,9 %N A115521 Decimal expansion of (Glaisher^12/(2^(4/3) * Pi * e^EulerGamma))^(Pi^2/8). %D A115521 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135. %H A115521 J. W. Glaisher, <a href="https://gdz.sub.uni-goettingen.de/id/PPN599484047_0024">On the constant which occurs in the formula for 1^1*2^2*3^3*...n^n</a>, Messenger of Mathematics, Vol. 24 (1894-95), pp. 1-16. %H A115521 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>. %F A115521 Equals Product_{k>=1} (2*k-1)^(1/(2*k-1)^2). - _Amiram Eldar_, Jun 25 2021 %e A115521 1.5190966334421985314... %t A115521 RealDigits[(Glaisher^12/(2^(4/3)Pi E^EulerGamma))^(Pi^2/8),10,100][[1]] (* _Vaclav Kotesovec_, Aug 15 2015 after _Eric W. Weisstein_ *) %Y A115521 Cf. A000796, A001113, A001620, A074962. %K A115521 nonn,cons %O A115521 1,2 %A A115521 _Eric W. Weisstein_, Jan 25 2006 %E A115521 Offset corrected by _Amiram Eldar_, Jun 25 2021