This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115531 #15 Aug 08 2019 07:57:26 %S A115531 816326530612244897959183673469388,1836734693877551020408163265306123, %T A115531 3265306122448979591836734693877552, %U A115531 3746097814776274713839750260145681581685744016649323621228 %N A115531 Numbers k such that the concatenation of k with 3*k gives a square. %C A115531 If 3+10^m is not squarefree, say 3+10^m = u^2*v where v is squarefree, then the terms with length m are t^2*v where 10^m > 3*t^2*v >= 10^(m-1). The first m for which 3+10^m is not squarefree are 34, 59, 60, 61, 67. - _Robert Israel_, Aug 07 2019 %C A115531 Since 3+10^m is divisible by 7^2 for m = 34 + 42*k, the sequence contains 4*(3+10^m)/49, 9*(3+10^m)/49 and 16*(3+10^m)/49 for such m, and in particular is infinite. - _Robert Israel_, Aug 08 2019 %H A115531 Robert Israel, <a href="/A115531/b115531.txt">Table of n, a(n) for n = 1..113</a> %p A115531 Res:= NULL: %p A115531 for m from 1 to 67 do %p A115531 if not numtheory:-issqrfree(3+10^m) then %p A115531 F:= select(t -> t[2]=1, ifactors(3+10^m)[2]); %p A115531 v:= mul(t[1], t=F); %p A115531 Res:= Res, seq(t^2*v, t = ceil(sqrt(10^(m-1)/(3*v))) .. floor(sqrt(10^m/(3*v)))) %p A115531 fi %p A115531 od: %p A115531 Res; # _Robert Israel_, Aug 07 2019 %Y A115531 Cf. A102567, A106497, A115527 - A115556. %K A115531 nonn,base %O A115531 1,1 %A A115531 _Giovanni Resta_, Jan 25 2006