This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115556 #22 Aug 30 2023 20:52:06 %S A115556 12857142857142857142857142857142857143, %T A115556 25714285714285714285714285714285714286, %U A115556 117391304347826086956521739130434782608695652173913043478261 %N A115556 Numbers whose square is the concatenation of two numbers 9*m and m. %C A115556 a(4)=156521739130434782608695652173913043478260869565217391304348. %C A115556 From _Robert Israel_, Aug 24 2023: (Start) %C A115556 If 9 * 10^d + 1 = a^2 * b with a > 1, then a * b * c is a term if a^2/(90 + 10^(1-d)) < c^2 < a^2/(9 + 10^(-d)). For example, 9 * 10^d + 1 is divisible by 7^2 for d == 37 (mod 42), and then (9 * 10^d + 1)/7 and 2*(9 * 10^d + 1)/7 are terms. In particular, the sequence is infinite. (End) %H A115556 Robert Israel, <a href="/A115556/b115556.txt">Table of n, a(n) for n = 1..12</a> %p A115556 F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k; %p A115556 R:= NULL; %p A115556 F:= ifactors(9*10^d+1)[2]; %p A115556 b:= mul(t[1]^floor(t[2]/2),t=F); %p A115556 for r in numtheory:-divisors(b) do %p A115556 x0:= (9*10^d+1)/r; %p A115556 m0:= x0/r; %p A115556 for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do %p A115556 R:= R, x0*k; %p A115556 od %p A115556 od; %p A115556 R %p A115556 end proc: %p A115556 sort(map(F, [$1..90])); # _Robert Israel_, Aug 24 2023 %Y A115556 Cf. A009474, A102567, A106497, A115527 - A115555. %K A115556 nonn,base,bref %O A115556 1,1 %A A115556 _Giovanni Resta_, Jan 25 2006 %E A115556 Definition modified by _Georg Fischer_, Jul 26 2019