A115586 Prime moduli p for which 2 is neither a quadratic residue nor a primitive root.
43, 109, 157, 229, 251, 277, 283, 307, 331, 397, 499, 571, 643, 683, 691, 733, 739, 811, 971, 997, 1013, 1021, 1051, 1069, 1093, 1163, 1181, 1429, 1459, 1579, 1597, 1613, 1627, 1699, 1709, 1723, 1789, 1811, 1933, 2003, 2011, 2179, 2203, 2251
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(p -> isprime(p) and numtheory:-order(2,p) <> p-1, [seq(seq(8*i+j,j=[3,5]),i=1..1000)]); # Robert Israel, Apr 02 2018
-
Mathematica
Select[Prime[Range[400]], MultiplicativeOrder[2, #] != # - 1 && JacobiSymbol[2, #] == -1 &] (* Alonso del Arte, Jun 08 2014 *)
-
PARI
is(n)=n>2&&isprime(n)&&kronecker(2,n)!=1&&znprimroot(n)!=2 \\ Lear Young, Mar 26 2014