cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115586 Prime moduli p for which 2 is neither a quadratic residue nor a primitive root.

Original entry on oeis.org

43, 109, 157, 229, 251, 277, 283, 307, 331, 397, 499, 571, 643, 683, 691, 733, 739, 811, 971, 997, 1013, 1021, 1051, 1069, 1093, 1163, 1181, 1429, 1459, 1579, 1597, 1613, 1627, 1699, 1709, 1723, 1789, 1811, 1933, 2003, 2011, 2179, 2203, 2251
Offset: 1

Views

Author

Don Reble, Mar 11 2006

Keywords

Crossrefs

Intersection of A216838 and A003629.

Programs

  • Maple
    select(p -> isprime(p) and numtheory:-order(2,p) <> p-1, [seq(seq(8*i+j,j=[3,5]),i=1..1000)]); # Robert Israel, Apr 02 2018
  • Mathematica
    Select[Prime[Range[400]], MultiplicativeOrder[2, #] != # - 1 && JacobiSymbol[2, #] == -1 &] (* Alonso del Arte, Jun 08 2014 *)
  • PARI
    is(n)=n>2&&isprime(n)&&kronecker(2,n)!=1&&znprimroot(n)!=2 \\ Lear Young, Mar 26 2014