cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115590 a(0) = 0; a(n) = (1+a(n-1))^3 for n > 0.

Original entry on oeis.org

0, 1, 8, 729, 389017000, 58871587162270593034051001, 204040901322752673844230437877671861543858084850895762746141813554591014612008
Offset: 0

Views

Author

Paolo Bonzini, Mar 15 2006; corrected Apr 06 2006 and Jan 19 2007

Keywords

Comments

Take the rooted ternary tree of depth n, with (3^(n+1) - 1) / 2 labeled nodes. Let the number of rooted subtrees be a(n). For example, for n = 1 the a(2) = 8 subtrees are:
R...R...R...R......R.......R...R.......R
.../....|....\..../.\...../|...|\...../|\
..o.....o.....o..o...o...o.o...o.o...o.o.o
Then a(n+1) = (1+a(n))^3.

Crossrefs

Programs

  • Mathematica
    {0}~Join~RecurrenceTable[{a[n]==(a[n-1]+1)^3, a[0]==1},a,{n,0,8}] (* Vaclav Kotesovec, May 21 2015 *)

Formula

As for A004019, it follows from Aho and Sloane that there is a constant c such that a(n) is the nearest integer to c^(3^n). In fact a(n) = nearest integer to b^(3^n) - 1 where b = 2.0804006677503193521177452323719035237099784935372250879749088464344434056773788...

Extensions

Name edited by Michael De Vlieger, Dec 21 2023