A115604 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts in which the smallest part occurs k times (1<=k<=n).
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 2, 1, 0, 1, 0, 0, 1, 3, 2, 1, 1, 1, 0, 1, 0, 0, 1, 3, 3, 1, 1, 1, 1, 0, 1, 0, 0, 1, 4, 2, 2, 2, 1, 1, 1, 0, 1, 0, 0, 1, 5, 3, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 5, 4, 3, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1
Offset: 1
Examples
T(14,2)=4 because we have [9,3,1,1],[7,7],[7,5,1,1] and [3,3,3,3,1,1]. Triangle starts: 1; 0,1; 1,0,1; 1,0,0,1; 1,1,0,0,1; 1,1,1,0,0,1; 2,1,0,1,0,0,1;
Programs
-
Maple
g:=sum(t*x^(2*k-1)/(1-t*x^(2*k-1))/product(1-x^(2*i-1),i=k+1..40),k=1..40): gser:=simplify(series(g,x=0,55)): for n from 1 to 15 do P[n]:=expand(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form
Formula
G.f.=G(t,x)=sum(tx^(2k-1)/[(1-tx^(2k-1))product(1-x^(2i-1), i=k+1..infinity)], k=1..infinity).
Comments