This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115605 #19 Sep 26 2015 18:29:48 %S A115605 0,0,2,7,31,128,549,2315,9826,41594,176242,746496,3162334,13395658, %T A115605 56745250,240376201,1018250793,4313378176,18271765435,77400436781, %U A115605 327873517634,1388894499108,5883451527348,24922700587008 %N A115605 Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ). %H A115605 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-3,-1,0,1,-3,-6,3,1). %F A115605 Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317. %F A115605 a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - _R. J. Mathar_, Dec 16 2011 %p A115605 A000035 := proc(n) %p A115605 n mod 2 ; %p A115605 end proc: %p A115605 A061347 := proc(n) %p A115605 op((n mod 3)+1,[-2,1,1]) ; %p A115605 end proc: %p A115605 A001076 := proc(n) %p A115605 option remember; %p A115605 if n <=1 then %p A115605 n; %p A115605 else %p A115605 4*procname(n-1)+procname(n-2) ; %p A115605 end if; %p A115605 end proc: %p A115605 A039834 := proc(n) %p A115605 (-1)^(n+1)*combinat[fibonacci](n) ; %p A115605 end proc: %p A115605 A087204 := proc(n) %p A115605 op((n mod 6)+1,[2,1,-1,-2,-1,1]) ; %p A115605 end proc: %p A115605 A115605 := proc(n) %p A115605 -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ; %p A115605 end proc: # _R. J. Mathar_, Dec 16 2011 %t A115605 LinearRecurrence[{3,6,-3,-1,0,1,-3,-6,3,1},{0,0,2,7,31,128,549,2315,9826,41594},30] (* _Harvey P. Dale_, Dec 16 2011 *) %o A115605 (PARI) concat([0,0],Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ _Charles R Greathouse IV_, Sep 27 2012 %Y A115605 Cf. A000045, A079962. %K A115605 nonn,easy %O A115605 0,3 %A A115605 _Roger L. Bagula_, Mar 13 2006