A115623 Irregular triangle read by rows: row n lists numbers of distinct parts of partitions of n in Mathematica order.
0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 1, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2
Offset: 0
Examples
Triangle starts: 0 1 1, 1 1, 2, 1 1, 2, 1, 2, 1 1, 2, 2, 2, 2, 2, 1 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1 1, 2, 2, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 1 1, 2, 2, 2, 2, 3, 2, 2, ... a(5,4)=2 from the fourth partition of 5 in the mentioned order, i.e., [3,1^2], which has two distinct parts, namely 1 and 3.
Links
- Robert Price, Table of n, a(n) for n = 0..9295 (25 rows).
Programs
-
Mathematica
Table[Length /@ Union /@ IntegerPartitions[n], {n, 0, 8}] // Flatten (* Robert Price, Jun 11 2020 *)
Formula
a(n, m) = number of distinct parts of the m-th partition of n in Mathematica order; n >= 0, m = 1..p(n) = A000041(n).
Extensions
Edited and corrected by Franklin T. Adams-Watters, May 29 2006
Comments