A115624 Number of iterations of signature function required to get to [1] from partitions in Mathematica order.
0, 1, 2, 1, 3, 2, 1, 3, 2, 4, 2, 1, 3, 3, 4, 4, 4, 2, 1, 3, 3, 4, 2, 3, 4, 2, 3, 4, 2, 1, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 4, 4, 2, 1, 3, 3, 4, 3, 3, 4, 2, 3, 4, 5, 4, 4, 3, 5, 5, 4, 2, 4, 4, 4, 2, 1, 3, 3, 4, 3, 3, 4, 3, 3, 4, 5, 4, 4, 3, 5, 5, 5, 4, 2, 5, 4, 4, 5, 5, 4, 4, 3, 4, 4, 2
Offset: 1
Examples
Partition 5 in Mathematica order is [2,1]. Applying the signature function to this repeatedly gives [2,1] -> [1^2] -> [2] -> [1], so a(5)=3.
Links
- Robert Price, Table of n, a(n) for n = 1..9295 (first 25 rows).
Crossrefs
Programs
-
Mathematica
sig[x_] := Length@NestWhileList[Last@Transpose@Tally@# &, x, # != {1} &, 1] - 1; Table[sig /@ IntegerPartitions[n], {n, 8}] // Flatten (* Robert Price, Jun 12 2020 *)
Comments