cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115626 Number of non-squashing partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 14, 26, 107, 190, 1234, 2182, 9947, 17414, 126953, 228398, 1039404, 1857419, 19047146, 35215110, 168364007, 307674658, 2378963269, 4429446046, 20237375204, 37371654467, 410117798653, 776233491226, 3797821367602
Offset: 0

Views

Author

Christian G. Bower, Jan 26 2006

Keywords

Comments

A "non-squashing" partition of n is one where n=p_1+p_2+...+p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, i]*a[i], {i, 0, Ceiling[ n/2] - 1}] + If[EvenQ[n], Binomial[n, n/2] (a[n/2] - 1/2), 0];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 10 2018 *)

Formula

a(n) = Sum_{i = 0..ceiling(n/2)-1} (binomial(n, i)*a(i)) + [if n is even] binomial(n, n/2)*(a(n/2)-1/2).