This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115636 #6 Nov 24 2021 10:40:54 %S A115636 1,1,-1,4,0,1,4,0,1,-1,4,-4,0,0,1,4,-4,0,0,1,-1,16,0,4,0,0,0,1,16,0,4, %T A115636 0,0,0,1,-1,16,0,4,-4,0,0,0,0,1,16,0,4,-4,0,0,0,0,1,-1,16,-16,0,0,4,0, %U A115636 0,0,0,0,1,16,-16,0,0,4,0,0,0,0,0,1,-1,16,-16,0,0,4,-4,0,0,0,0,0,0,1,16,-16,0,0,4,-4,0,0,0,0,0,0,1,-1 %N A115636 A divide-and-conquer number triangle. %H A115636 G. C. Greubel, <a href="/A115636/b115636.txt">Rows n = 0..50 of the triangle, flattened</a> %F A115636 T(n, 0) = A115639(n). %F A115636 Sum_{k=0..n} T(n, k) = A115637(n). %F A115636 T(n, k) = (-1)^k*( 1 if k = n otherwise (-1)*Sum_{j=k+1..n} T(n, j)*A115633(j, k) ). - _G. C. Greubel_, Nov 24 2021 %e A115636 Triangle begins %e A115636 1; %e A115636 1, -1; %e A115636 4, 0, 1; %e A115636 4, 0, 1, -1; %e A115636 4, -4, 0, 0, 1; %e A115636 4, -4, 0, 0, 1, -1; %e A115636 16, 0, 4, 0, 0, 0, 1; %e A115636 16, 0, 4, 0, 0, 0, 1, -1; %e A115636 16, 0, 4, -4, 0, 0, 0, 0, 1; %e A115636 16, 0, 4, -4, 0, 0, 0, 0, 1, -1; %e A115636 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1; %e A115636 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1; %e A115636 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1; %e A115636 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1; %e A115636 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1; %e A115636 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, -1; %e A115636 64, 0, 16, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1; %t A115636 A115633[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, Mod[n,2], If[n==2*k+2, -4, 0]]]; %t A115636 T[n_, k_]:= T[n, k]= (-1)^k*If[k==n, 1, -Sum[T[n, j]*A115633[j, k], {j,k+1,n}] ]; %t A115636 Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 24 2021 *) %o A115636 (Sage) %o A115636 @CachedFunction %o A115636 def A115633(n, k): %o A115636 if (k==n): return (-1)^n %o A115636 elif (k==n-1): return n%2 %o A115636 elif (n==2*k+2): return -4 %o A115636 else: return 0 %o A115636 def A115636(n,k): %o A115636 if (k==0): return 4^(floor(log(n+2, 2)) -1) %o A115636 elif (k==n): return (-1)^n %o A115636 elif (k==n-1): return (n%2) %o A115636 else: return (-1)^(k+1)*sum( A115636(n, j)*A115633(j, k) for j in (k+1..n) ) %o A115636 flatten([[A115636(n, k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 24 2021 %Y A115636 Cf. A115633 (inverse), A115637 (row sums), A115639 (first column). %K A115636 sign,tabl %O A115636 0,4 %A A115636 _Paul Barry_, Jan 27 2006