This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115713 #8 Nov 24 2021 03:06:44 %S A115713 1,-1,1,-4,0,1,0,0,-1,1,0,-4,0,0,1,0,0,0,0,-1,1,0,0,-4,0,0,0,1,0,0,0, %T A115713 0,0,0,-1,1,0,0,0,-4,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,-4,0,0,0, %U A115713 0,0,1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,1 %N A115713 A divide-and-conquer related triangle. %H A115713 G. C. Greubel, <a href="/A115713/b115713.txt">Rows n = 0..50 of the triangle, flattened</a> %F A115713 G.f.: (1-x+x*y)/(1-x^2*y^2) - 4*x^2/(1-x^2*y). %F A115713 (1, x) - (x, x)/2 - (x, -x)/2 - 4*(x^2, x^2) expressed in the notation of stretched Riordan arrays. %F A115713 Column k has g.f.: x^k - (x*(-x)^k + x^(k+1))/2 - 4*x^(2*k+2). %F A115713 T(n, k) = if(n=k, 1, 0) OR if(n=2k+2, -4, 0) OR if(n=k+1, -(1+(-1)^k)/2, 0). %F A115713 Sum_{k=0..n} T(n, k) = A115634(n). %F A115713 Sum_{k=0..floor(n/2)} T(n-k, k) = A115714(n). %e A115713 Triangle begins %e A115713 1; %e A115713 -1, 1; %e A115713 -4, 0, 1; %e A115713 0, 0, -1, 1; %e A115713 0, -4, 0, 0, 1; %e A115713 0, 0, 0, 0, -1, 1; %e A115713 0, 0, -4, 0, 0, 0, 1; %e A115713 0, 0, 0, 0, 0, 0, -1, 1; %e A115713 0, 0, 0, -4, 0, 0, 0, 0, 1; %e A115713 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A115713 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1; %e A115713 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A115713 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1; %e A115713 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A115713 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1; %p A115713 A115713 := proc(n,k) %p A115713 coeftayl( (1-x+x*y)/(1-x^2*y^2)-4*x^2/(1-x^2*y),x=0,n) ; %p A115713 coeftayl( %,y=0,k) ; %p A115713 end proc: # _R. J. Mathar_, Sep 07 2016 %t A115713 T[n_, k_]:= If[k==n, 1, If[k==n-1, -(1-(-1)^n)/2, If[n==2*k+2, -4, 0]]]; %t A115713 Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 23 2021 *) %o A115713 (Sage) %o A115713 def A115713(n,k): %o A115713 if (k==n): return 1 %o A115713 elif (k==n-1): return -(n%2) %o A115713 elif (n==2*k+2): return -4 %o A115713 else: return 0 %o A115713 flatten([[A115713(n,k) for k in (0..n)] for n in (0..18)]) # _G. C. Greubel_, Nov 23 2021 %Y A115713 Cf. A115634 (row sums), A115714 (diagonal sums), A115715 (inverse). %K A115713 easy,sign,tabl %O A115713 0,4 %A A115713 _Paul Barry_, Jan 29 2006