This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115715 #9 Nov 24 2021 10:40:39 %S A115715 1,1,1,4,0,1,4,0,1,1,4,4,0,0,1,4,4,0,0,1,1,16,0,4,0,0,0,1,16,0,4,0,0, %T A115715 0,1,1,16,0,4,4,0,0,0,0,1,16,0,4,4,0,0,0,0,1,1,16,16,0,0,4,0,0,0,0,0, %U A115715 1,16,16,0,0,4,0,0,0,0,0,1,1,16,16,0,0,4,4,0,0,0,0,0,0,1,16,16,0,0,4,4,0,0,0,0,0,0,1,1 %N A115715 A divide-and-conquer triangle. %H A115715 G. C. Greubel, <a href="/A115715/b115715.txt">Rows n = 0..50 of the triangle, flattened</a> %F A115715 Sum_{=0..n} T(n, k) = A032925(n). %F A115715 T(n, 0) = A115639(n). %F A115715 T(n, k) = 1 if n = k, otherwise T(n, k) = (-1)*Sum_{j=k+1..n} T(n, j)*A115713(j, k). - _R. J. Mathar_, Sep 07 2016 %e A115715 Triangle begins %e A115715 1; %e A115715 1, 1; %e A115715 4, 0, 1; %e A115715 4, 0, 1, 1; %e A115715 4, 4, 0, 0, 1; %e A115715 4, 4, 0, 0, 1, 1; %e A115715 16, 0, 4, 0, 0, 0, 1; %e A115715 16, 0, 4, 0, 0, 0, 1, 1; %e A115715 16, 0, 4, 4, 0, 0, 0, 0, 1; %e A115715 16, 0, 4, 4, 0, 0, 0, 0, 1, 1; %e A115715 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1; %e A115715 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1; %e A115715 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1; %e A115715 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 1; %e A115715 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1; %e A115715 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 1; %e A115715 64, 0, 16, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1; %p A115715 A115715 := proc(n,k) %p A115715 option remember; %p A115715 if n = k then %p A115715 1; %p A115715 elif k > n then %p A115715 0; %p A115715 else %p A115715 -add(procname(n,l)*A115713(l,k),l=k+1..n) ; %p A115715 end if; %p A115715 end proc: %p A115715 seq(seq(A115715(n,k),k=0..n),n=0..13) ; # _R. J. Mathar_, Sep 07 2016 %t A115715 A115713[n_, k_]:= If[k==n, 1, If[k==n-1, ((-1)^n-1)/2, If[n==2*k+2, -4, 0]]]; %t A115715 T[n_, k_]:= T[n, k]= If[k==n, 1, -Sum[T[n, j]*A115713[j, k], {j, k+1, n}]]; %t A115715 Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 23 2021 *) %o A115715 (Sage) %o A115715 @CachedFunction %o A115715 def A115713(n,k): %o A115715 if (k==n): return 1 %o A115715 elif (k==n-1): return -(n%2) %o A115715 elif (n==2*k+2): return -4 %o A115715 else: return 0 %o A115715 def A115715(n,k): %o A115715 if (k==0): return 4^(floor(log(n+2, 2)) -1) %o A115715 elif (k==n): return 1 %o A115715 elif (k==n-1): return (n%2) %o A115715 else: return (-1)*sum( A115715(n,j)*A115713(j,k) for j in (k+1..n) ) %o A115715 flatten([[A115715(n,k) for k in (0..n)] for n in (0..18)]) # _G. C. Greubel_, Nov 23 2021 %Y A115715 Cf. A032925 (row sums), A115639 (first column), A115713 (inverse). %K A115715 easy,nonn,tabl %O A115715 0,4 %A A115715 _Paul Barry_, Jan 29 2006