cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115717 A divide-and-conquer triangle related to A007583.

This page as a plain text file.
%I A115717 #10 Nov 24 2021 11:45:16
%S A115717 1,0,1,3,-1,1,0,0,0,1,0,4,-1,-1,1,0,0,0,0,0,1,12,-4,4,0,-1,-1,1,0,0,0,
%T A115717 0,0,0,0,1,0,0,0,4,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,1,0,16,-4,-4,4,0,0,0,
%U A115717 -1,-1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,48,-16,16,0,-4,-4,4,0,0,0,0,0,-1,-1,1
%N A115717 A divide-and-conquer triangle related to A007583.
%C A115717 Product of (1-x, x), which is A167374, and number triangle A115715.
%H A115717 G. C. Greubel, <a href="/A115717/b115717.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A115717 Sum_{k=0..n} T(n, k) = A115716(n).
%F A115717 T(n ,k) = Sum_{j=k..n} A167374(n, j)*A115715(j, k). - _R. J. Mathar_, Sep 07 2016
%e A115717 Triangle begins
%e A115717    1;
%e A115717    0,   1;
%e A115717    3,  -1,  1;
%e A115717    0,   0,  0,  1;
%e A115717    0,   4, -1, -1,  1;
%e A115717    0,   0,  0,  0,  0,  1;
%e A115717   12,  -4,  4,  0, -1, -1,  1;
%e A115717    0,   0,  0,  0,  0,  0,  0,  1;
%e A115717    0,   0,  0,  4,  0,  0, -1, -1,  1;
%e A115717    0,   0,  0,  0,  0,  0,  0,  0,  0,  1;
%e A115717    0,  16, -4, -4,  4,  0,  0,  0, -1, -1,  1;
%e A115717    0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
%e A115717    0,   0,  0,  0,  0,  4,  0,  0,  0,  0, -1, -1,  1;
%e A115717    0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
%e A115717   48, -16, 16,  0, -4, -4,  4,  0,  0,  0,  0,  0, -1, -1,  1;
%p A115717 A115717 := proc(n,k)
%p A115717     add( A167374(n,j)*A115715(j,k),j=k..n) ;
%p A115717 end proc: # _R. J. Mathar_, Sep 07 2016
%t A115717 A167374[n_, k_]:= If[k>n-2, (-1)^(n-k), 0];
%t A115717 g[n_, k_]:= g[n, k]= If[k==n, 1, If[k==n-1, -Mod[n, 2], If[n==2*k+2, -4, 0]]]; (* g = A115713 *)
%t A115717 f[n_, k_]:= f[n, k]= If[k==n, 1, -Sum[f[n,j]*g[j,k], {j,k+1,n}]]; (* f=A115715 *)
%t A115717 A115717[n_, k_]:= A115717[n, k]= Sum[A167374[n,j]*f[j,k], {j,k,n}];
%t A115717 Table[A115717[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 23 2021 *)
%o A115717 (Sage)
%o A115717 @cached_function
%o A115717 def A115717(n,k):
%o A115717     def A167374(n, k):
%o A115717         if (k>n-2): return (-1)^(n-k)
%o A115717         else: return 0
%o A115717     def A115713(n,k):
%o A115717         if (k==n): return 1
%o A115717         elif (k==n-1): return -(n%2)
%o A115717         elif (n==2*k+2): return -4
%o A115717         else: return 0
%o A115717     def A115715(n,k):
%o A115717         if (k==0): return 4^(floor(log(n+2, 2)) -1)
%o A115717         elif (k==n): return 1
%o A115717         elif (k==n-1): return (n%2)
%o A115717         else: return (-1)*sum( A115715(n,j+k+1)*A115713(j+k+1,k) for j in (0..n-k-1) )
%o A115717     return sum( A167374(n, j+k)*A115715(j+k, k) for j in (0..n-k) )
%o A115717 flatten([[A115717(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 23 2021
%Y A115717 Cf. A007583, A115715, A115716 (row sums), A167374.
%K A115717 easy,sign,tabl
%O A115717 0,4
%A A115717 _Paul Barry_, Jan 29 2006