This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115718 #8 Nov 30 2021 05:36:10 %S A115718 1,0,1,-3,1,1,0,0,0,1,-3,-3,1,1,1,0,0,0,0,0,1,-3,-3,-3,1,1,1,1,0,0,0, %T A115718 0,0,0,0,1,-3,-3,-3,-3,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,-3,-3,-3,-3,-3,1, %U A115718 1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,-3,-3,-3,-3,-3,-3,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A115718 Inverse of number triangle A115717; a divide-and-conquer related triangle. %C A115718 Product of A115713 and (1/(1-x), x). %C A115718 Row sums are 1,1,-1,1,-3,1,-5,1,-7,1, ... with g.f. (1+x-3*x^2-x^3)/(1-x^2)^2. %C A115718 Row sums of inverse are A115716. %H A115718 G. C. Greubel, <a href="/A115718/b115718.txt">Rows n = 0..50 of the triangle, flattened</a> %F A115718 From _G. C. Greubel_, Nov 29 2021: (Start) %F A115718 T(2*n, k) = -3 if (k < n/2) otherwise 1. %F A115718 T(2*n+1, k) = 0 if (k < n) otherwise 1. %F A115718 Sum_{k=0..n} T(n, k) = (1/2)*(2 + (1 + (-1)^n)*n) = 1 + A237420(n). (End) %e A115718 Triangle begins %e A115718 1; %e A115718 0, 1; %e A115718 -3, 1, 1; %e A115718 0, 0, 0, 1; %e A115718 -3, -3, 1, 1, 1; %e A115718 0, 0, 0, 0, 0, 1; %e A115718 -3, -3, -3, 1, 1, 1, 1; %e A115718 0, 0, 0, 0, 0, 0, 0, 1; %e A115718 -3, -3, -3, -3, 1, 1, 1, 1, 1; %e A115718 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A115718 -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1; %e A115718 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A115718 -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1; %e A115718 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A115718 -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1; %t A115718 T[n_, k_]:= If[OddQ[n], If[k<n, 0, 1], If[k<n/2, -3, 1]]; %t A115718 Table[T[n, k], {n,0,16}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 29 2021 *) %o A115718 (Sage) %o A115718 def A115718(n,k): %o A115718 if (n%2==0): return 0 if (k<n) else 1 %o A115718 else: return -3 if (k<n/2) else 1 %o A115718 flatten([[A115718(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 29 2021 %Y A115718 Cf. A115713, A115716, A115717, A237420. %K A115718 easy,sign,tabl %O A115718 0,4 %A A115718 _Paul Barry_, Jan 29 2006