This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115720 #22 Feb 16 2025 08:33:00 %S A115720 1,0,1,0,2,0,3,0,4,1,0,5,2,0,6,5,0,7,8,0,8,14,0,9,20,1,0,10,30,2,0,11, %T A115720 40,5,0,12,55,10,0,13,70,18,0,14,91,30,0,15,112,49,0,16,140,74,1,0,17, %U A115720 168,110,2,0,18,204,158,5,0,19,240,221,10,0,20,285,302,20,0,21,330,407 %N A115720 Triangle T(n,k) is the number of partitions of n with Durfee square k. %C A115720 T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind. %H A115720 Alois P. Heinz, <a href="/A115720/b115720.txt">Rows n = 0..600, flattened</a> %H A115720 Findstat, <a href="http://www.findstat.org/StatisticsDatabase/St000183/">St000183: The side length of the Durfee square of an integer partition</a> %H A115720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square</a> %F A115720 T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts. %e A115720 Triangle starts: %e A115720 1; %e A115720 0, 1; %e A115720 0, 2; %e A115720 0, 3; %e A115720 0, 4, 1; %e A115720 0, 5, 2; %e A115720 0, 6, 5; %e A115720 0, 7, 8; %e A115720 0, 8, 14; %e A115720 0, 9, 20, 1; %e A115720 0, 10, 30, 2; %e A115720 From _Gus Wiseman_, Apr 12 2019: (Start) %e A115720 Row n = 9 counts the following partitions: %e A115720 (9) (54) (333) %e A115720 (81) (63) %e A115720 (711) (72) %e A115720 (6111) (432) %e A115720 (51111) (441) %e A115720 (411111) (522) %e A115720 (3111111) (531) %e A115720 (21111111) (621) %e A115720 (111111111) (3222) %e A115720 (3321) %e A115720 (4221) %e A115720 (4311) %e A115720 (5211) %e A115720 (22221) %e A115720 (32211) %e A115720 (33111) %e A115720 (42111) %e A115720 (222111) %e A115720 (321111) %e A115720 (2211111) %e A115720 (End) %p A115720 b:= proc(n, i) option remember; %p A115720 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) %p A115720 end: %p A115720 T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2): %p A115720 seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # _Alois P. Heinz_, Apr 09 2012 %t A115720 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* _Jean-François Alcover_, Dec 03 2015, after _Alois P. Heinz_ *) %t A115720 durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; %t A115720 Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* _Gus Wiseman_, Apr 12 2019 *) %Y A115720 For a version without zeros see A115994. Row lengths are A003059. Row sums are A000041. Column k = 2 is A006918. Column k = 3 is A117485. %Y A115720 Cf. A008284, A115721, A115722, A257990, A325164. %Y A115720 Related triangles are A096771, A325188, A325189, A325192, with Heinz-encoded versions A263297, A325169, A065770, A325178. %K A115720 nonn,tabf %O A115720 0,5 %A A115720 _Franklin T. Adams-Watters_, Mar 11 2006