cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115721 Table of Durfee square of partitions in Abramowitz and Stegun order.

This page as a plain text file.
%I A115721 #9 Feb 16 2025 08:33:00
%S A115721 0,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,2,1,2,2,1,2,1,1,1,1,2,2,
%T A115721 1,2,2,2,1,2,2,1,2,1,1,1,1,2,2,2,1,2,2,2,2,1,2,2,2,2,1,2,2,1,2,1,1,1,
%U A115721 1,2,2,2,1,2,2,2,2,2,3,1,2,2,2,2,2,1,2,2,2,2,1,2,2,1,2,1,1,1,1,2,2,2,2,1,2
%N A115721 Table of Durfee square of partitions in Abramowitz and Stegun order.
%H A115721 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A115721 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square.</a>
%F A115721 If partition is laid out in descending order p(1),p(2),...,p(k) without repetition factors (e.g. [3,2,2,1,1,1]), a(P) = max_k min(k,p(k)).
%e A115721 First few rows: 0; 1,1; 1,1,1; 1,1,2,1,1; 1,1,2,1,2,1,1
%Y A115721 Cf. A115722, A115994, A115720, A036036.
%Y A115721 Row lengths A000041, totals A115995.
%K A115721 nonn,tabf
%O A115721 0,10
%A A115721 _Franklin T. Adams-Watters_, Mar 11 2006