This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115721 #9 Feb 16 2025 08:33:00 %S A115721 0,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,2,1,2,2,1,2,1,1,1,1,2,2, %T A115721 1,2,2,2,1,2,2,1,2,1,1,1,1,2,2,2,1,2,2,2,2,1,2,2,2,2,1,2,2,1,2,1,1,1, %U A115721 1,2,2,2,1,2,2,2,2,2,3,1,2,2,2,2,2,1,2,2,2,2,1,2,2,1,2,1,1,1,1,2,2,2,2,1,2 %N A115721 Table of Durfee square of partitions in Abramowitz and Stegun order. %H A115721 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A115721 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square.</a> %F A115721 If partition is laid out in descending order p(1),p(2),...,p(k) without repetition factors (e.g. [3,2,2,1,1,1]), a(P) = max_k min(k,p(k)). %e A115721 First few rows: 0; 1,1; 1,1,1; 1,1,2,1,1; 1,1,2,1,2,1,1 %Y A115721 Cf. A115722, A115994, A115720, A036036. %Y A115721 Row lengths A000041, totals A115995. %K A115721 nonn,tabf %O A115721 0,10 %A A115721 _Franklin T. Adams-Watters_, Mar 11 2006