cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115725 Number of partitions with maximum rectangle <= n.

This page as a plain text file.
%I A115725 #12 Feb 16 2025 08:33:00
%S A115725 1,2,5,10,26,42,118,171,389,692,1442,1854,5534,6895,11910,21116,44278,
%T A115725 52568,118734,138670,300326,492507,728514,829244,2167430,2987124,
%U A115725 4167602,6092588,11308432,12554900,29925267,33023589,57950313,81424281,106214784,148101088
%N A115725 Number of partitions with maximum rectangle <= n.
%C A115725 A partition has maximum rectangle <= n iff it is a subpartition of row n of A010766.
%H A115725 Alois P. Heinz, <a href="/A115725/b115725.txt">Table of n, a(n) for n = 0..100</a>
%H A115725 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FerrersDiagram.html">Ferrers Diagram.</a>
%F A115725 a(n) = subpart([<floor(n/k)]). The subpart function is A115728 (or A115729), [<floor(n/k)>] is row n of A010766.
%F A115725 a(n) = Sum_{k>=0} A182114(k,n). - _Alois P. Heinz_, Nov 02 2012
%e A115725 The 10 partitions with maximum rectangle <= 3: 0: []; 1: [1]; 2: [2], [1^2], [2,1]; 3: [3], [1^3], [3,1], [2,1^2], [3,1^2].
%Y A115725 Cf. A115728, A115729, A115724, A010766.
%K A115725 nonn
%O A115725 0,2
%A A115725 _Franklin T. Adams-Watters_, Mar 11 2006