cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115728 Number of subpartitions of partitions in Abramowitz and Stegun order.

This page as a plain text file.
%I A115728 #21 Jan 22 2021 21:24:22
%S A115728 1,2,3,3,4,5,4,5,7,6,7,5,6,9,9,10,9,9,6,7,11,12,13,10,14,13,10,12,11,
%T A115728 7,8,13,15,16,14,19,17,16,16,19,16,14,15,13,8,9,15,18,19,18,24,21,15,
%U A115728 23,22,26,21,19,22,23,24,19,15,18,18,15,9,10,17,21,22,22,29
%N A115728 Number of subpartitions of partitions in Abramowitz and Stegun order.
%C A115728 subpart([n^k]) = C(n+k,k); subpart([1,2,3,...,n]) = C_n = A000108(n). The b(i,j) defined in the formula for sequences [1,2,3,...] form A009766.
%C A115728 Row sums are A297388.  Row lengths are A000041. - _Geoffrey Critzer_, Jan 10 2021
%H A115728 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F A115728 For a partition P = [p_1,...,p_n] with the p_i in increasing order, define b(i,j) to be the number of subpartitions of [p_1,...,p_i] with the i-th part = j (b(i,0) is subpartitions with less than i parts). Then b(1,j)=1 for j<=p_1, b(i+1,j) = Sum_{k=0..j} b(i,k) for 0<=j<=p_{i+1}; and the total number of subpartitions is sum_{k=1..p_n} b(n,k).
%F A115728 For a partition P = {p(n)}, the number of subpartitions {s(n)} of P can be determined by the g.f.: 1/(1-x) = Sum_{n>=0} s(n)*x^n*(1-x)^p(n). - _Paul D. Hanna_, Jul 03 2006
%e A115728 Partition 5 in A&S order is [2,1]; it has 5 subpartitions: [], [1], [2], [1^2] and [2,1] itself.
%e A115728 1
%e A115728 2
%e A115728 3, 3
%e A115728 4, 5, 4
%e A115728 5, 7, 6, 7,  5
%e A115728 6, 9, 9, 10, 9, 9, 6
%o A115728 (PARI) /* Expects input as vector in increasing order - e.g. [1,1,2,3] */
%o A115728 subpart(p)=local(i,j,v,n);n=matsize(p)[2];if(n==0,1,v=vector(p[n]+1);v[1] =1;for(i=1,n,for(j=1,p[i],v[j+1]+=v[j]));for(j=1,p[n],v[j+1]+=v[j]);v[p[n ]+1])
%o A115728 (PARI) /* Given Partition p(), Find Subpartitions s(): */ {s(n)=polcoeff(x^n-sum(k=0, n-1, s(k)*x^k*(1-x+x*O(x^n))^p(k)),n)} \\ _Paul D. Hanna_, Jul 03 2006
%Y A115728 Cf. A115729, A036036, A000108, A009766, A007318, A297388, A000041.
%K A115728 nonn
%O A115728 0,2
%A A115728 _Franklin T. Adams-Watters_, Mar 11 2006