cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.

This page as a plain text file.
%I A115872 #24 Jan 04 2022 09:22:49
%S A115872 1,2,1,3,2,3,4,3,6,1,5,4,7,2,7,6,5,12,3,14,3,7,6,14,4,15,6,7,8,7,15,5,
%T A115872 28,7,14,1,9,8,24,6,30,12,15,2,15,10,9,28,7,31,14,28,3,30,7,11,10,30,
%U A115872 8,56,15,30,4,31,14,3,12,11,31,9,60,24,31,5,60,15,6,3,13,12,48,10,62,28,56,6,62,28,12,6,5,14,13,51,11,63,30,60,7,63,30,15,7,10,7
%N A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.
%C A115872 Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
%C A115872 Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
%C A115872 Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.
%C A115872 Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - _Antti Karttunen_, May 08 2019
%H A115872 Antti Karttunen, <a href="/A115872/b115872.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array</a>
%H A115872 <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a>
%e A115872 Fifteen initial terms of rows 1 - 19 are listed below:
%e A115872    1:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
%e A115872    2:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
%e A115872    3:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
%e A115872    4:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
%e A115872    5:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
%e A115872    6:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
%e A115872    7:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
%e A115872    8:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
%e A115872    9: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
%e A115872   10:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
%e A115872   11:  3,  6, 12,  15,  24,  27,  30,  31,  48,  51,  54,  60,  62,  63,  96, ...
%e A115872   12:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
%e A115872   13:  5, 10, 15,  20,  21,  30,  31,  40,  42,  45,  47,  60,  61,  62,  63, ...
%e A115872   14:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
%e A115872   15: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
%e A115872   16:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
%e A115872   17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...
%e A115872   18: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
%e A115872   19:  7, 14, 28,  31,  56,  62,  63, 112, 119, 124, 126, 127, 224, 238, 248, ...
%t A115872 X[a_, b_] := Module[{A, B, C, x},
%t A115872      A = Reverse@IntegerDigits[a, 2];
%t A115872      B = Reverse@IntegerDigits[b, 2];
%t A115872      C = Expand[
%t A115872         Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
%t A115872         Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
%t A115872      PolynomialMod[C, 2] /. x -> 2];
%t A115872 T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},
%t A115872      For[i = 1, True, i++, If[n*i == X[x, i],
%t A115872      If[k0 == 1, Return[i], k0--]]]];
%t A115872 Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Jan 04 2022 *)
%o A115872 (PARI)
%o A115872 up_to = 120;
%o A115872 A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
%o A115872 A065621(n) = bitxor(n-1,n+n-1);
%o A115872 A115872sq(n, k) = { my(x = A065621(n)); for(i=1,oo,if((n*i)==A048720(x,i),if(1==k,return(i),k--))); };
%o A115872 A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col,(a-(col-1))))); (v); };
%o A115872 v115872 = A115872list(up_to);
%o A115872 A115872(n) = v115872[n]; \\ (Slow) - _Antti Karttunen_, May 08 2019
%Y A115872 Transpose: A114388. First column: A115873.
%Y A115872 Cf. A048720, A065621, A115857, A115871, A325565, A325566, A325567, A325568, A325570, A325571.
%Y A115872 Cf. also arrays A277320, A277810, A277820, A284270.
%Y A115872 A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.
%K A115872 nonn,tabl
%O A115872 1,2
%A A115872 _Antti Karttunen_, Feb 07 2006
%E A115872 Example section added and the data section extended up to n=105 by _Antti Karttunen_, May 08 2019