This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115873 #7 Jan 04 2022 18:35:24 %S A115873 1,1,3,1,7,3,7,1,15,7,3,3,5,7,15,1,31,15,7,7,31,3,7,3,31,5,31,7,31,15, %T A115873 31,1,63,31,15,15,7,7,7,7,63,31,3,3,63,7,15,3,21,31,63,5,63,31,7,7,9, %U A115873 31,63,15,21,31,63,1,127,63,31,31,15,15,15,15,127,7,31,7,15,7,15,7,51 %N A115873 First column of A115872. %F A115873 a(2^k) = 1, a(2n) = a(n). %t A115873 X[a_, b_] := Module[{A, B, C, x}, %t A115873 A = Reverse@IntegerDigits[a, 2]; %t A115873 B = Reverse@IntegerDigits[b, 2]; %t A115873 C = Expand[ %t A115873 Sum[A[[i]]*x^(i - 1), {i, 1, Length[A]}]* %t A115873 Sum[B[[i]]*x^(i - 1), {i, 1, Length[B]}]]; %t A115873 PolynomialMod[C, 2] /. x -> 2]; %t A115873 T[n_, k_] := Module[{x = BitXor[n - 1, 2 n - 1], k0 = k}, %t A115873 For[i = 1, True, i++, If[n*i == X[x, i], %t A115873 If[k0 == 1, Return[i], k0--]]]]; %t A115873 a[n_] := T[n, 1]; %t A115873 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jan 04 2022 *) %Y A115873 Cf. A114395, A114396, A115872. %K A115873 nonn %O A115873 1,3 %A A115873 _Antti Karttunen_, Feb 07 2006