This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115874 #17 Jan 04 2022 09:23:06 %S A115874 0,7,14,28,31,56,62,63,112,119,124,126,127,224,238,248,252,254,255, %T A115874 448,455,476,496,504,508,510,511,896,910,952,992,1008,1016,1020,1022, %U A115874 1023,1792,1799,1820,1823,1904,1911,1984,1991,2016,2032,2040,2044 %N A115874 Integers i such that 19*i = 55 X i. %C A115874 Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720). %C A115874 From _Robert Israel_, Apr 08 2018: (Start) %C A115874 n is in the sequence if and only if 2*n is. %C A115874 If n is in the sequence, then so is (2^k+1)*n if 2^k > n. %C A115874 Contains 2^k-1 for k >= 5. (End) %H A115874 Robert Israel, <a href="/A115874/b115874.txt">Table of n, a(n) for n = 1..10000</a> %H A115874 <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a> %p A115874 X:= proc(a,b) local A,B,C; %p A115874 A:= convert(a,base,2); %p A115874 B:= convert(b,base,2); %p A115874 C:= expand(add(A[i]*x^(i-1),i=1..nops(A))*add(B[i]*x^(i-1),i=1..nops(B))) mod 2; %p A115874 eval(C,x=2) %p A115874 end proc: %p A115874 select(t -> 19*t = X(55,t), [$0..10^4]); # _Robert Israel_, Apr 08 2018 %t A115874 X[a_, b_] := Module[{A, B, C}, %t A115874 A = Reverse@IntegerDigits[a, 2]; %t A115874 B = Reverse@IntegerDigits[b, 2]; %t A115874 C = Expand[ %t A115874 Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]* %t A115874 Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]]; %t A115874 PolynomialMod[C, 2] /. x -> 2]; %t A115874 Select[Range[0, 10^4], 19*# == 55~X~#&] (* _Jean-François Alcover_, Jan 04 2022, after _Robert Israel_ *) %Y A115874 Row 19 of A115872. Superset of A115876? A115875 shows this sequence in binary. %K A115874 nonn %O A115874 1,2 %A A115874 _Antti Karttunen_, Feb 07 2006 %E A115874 Offset corrected by _Robert Israel_, Apr 08 2018