A115881 a(n) is the largest positive y satisfying the Diophantine equation x^2=y(y+n). a(n)=0 if there are no solutions.
0, 0, 1, 0, 4, 2, 9, 1, 16, 8, 25, 4, 36, 18, 49, 9, 64, 32, 81, 16, 100, 50, 121, 25, 144, 72, 169, 36, 196, 98, 225, 49, 256, 128, 289, 64, 324, 162, 361, 81, 400, 200, 441, 100, 484, 242, 529, 121, 576, 288, 625, 144, 676, 338, 729, 169, 784, 392, 841, 196
Offset: 1
Keywords
Examples
a(15)=49, since the solutions (x,y) to x^2=y(y+15) are (4,1), (10,5), (18, 12) and (56, 49). The largest y is 49, from (x,y)=(56,49).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Max[y/.Solve[{x^2==y*(y+n),y>0},{x,y},Integers]],{n,1,100}]/.y->0 (* Vaclav Kotesovec, Jun 26 2014 *)
-
Python
def A115881(n): a, b = divmod(n,4) return ((c:=a**2)-(a<<1)+1,(d:=c<<2),c<<1,d+(a<<2)+1)[b] # Chai Wah Wu, Aug 21 2024
Formula
Empirical g.f.: -x^3*(x^9+x^8+2*x^7+4*x^6+x^5+6*x^4+2*x^3+4*x^2+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jun 26 2014
From empirical g.f.: a(n) = 1/2 - n/2 + 11*n^2/64 + (1/4 - 1/32*n^2) * (2*floor(n/4) + 2*floor((n+1)/4) - n + 1) + (1/4 - 5/64*n^2)*(-1)^n. - Vaclav Kotesovec, Jun 26 2014
From Chai Wah Wu, Aug 21 2024: (Start)
a(4*j) = j^2 - 2*j + 1,
a(4*j+1) = 4*j^2,
a(4*j+2) = 2*j^2,
a(4*j+3) = 4*j^2+4*j+1 (see A115880).
(End)
Comments