cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115940 Pandigital (meaning every digit appears exactly once) triangular numbers.

This page as a plain text file.
%I A115940 #17 Apr 15 2022 11:21:58
%S A115940 1062489753,1239845706,1256984730,1520843976,1539264870,1597283460,
%T A115940 1684930275,1952843760,1957346028,1978236450,2197480365,2367098415,
%U A115940 2418079653,2503948761,2634980715,2718609453,2735891406,2750483196
%N A115940 Pandigital (meaning every digit appears exactly once) triangular numbers.
%C A115940 There are 82 such numbers, the largest being T(138959)=9654871320.
%C A115940 The sequence of pandigital binomial coefficients C(m,k) with k>1 contains 84 numbers, these 82 triangular terms of the form C(m,2) and only two other ones C(595,4) = 5169738420 and C(253,5) = 8301429675 (see link). - _Bernard Schott_, Apr 15 2022
%H A115940 Zak Seidov, <a href="/A115940/b115940.txt">Table of n, a(n) for n = 1..82</a> (full sequence)
%H A115940 Fun With Num3ers, <a href="https://benvitalenum3ers.wordpress.com/2016/05/02/pandigital-binomial-coefficient-when-cn-k-is-pandigita/">Pandigital Binomial coefficient | When C(n, k) is pandigital</a>.
%e A115940 T(46097)=1062489753.
%Y A115940 Cf. A050278, A115939.
%K A115940 nonn,base,fini,full
%O A115940 1,1
%A A115940 _Giovanni Resta_, Feb 06 2006