This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115941 #10 Feb 12 2021 08:20:20 %S A115941 2,11,101,11113,10301,1011013,1003001,100110013,100030001,10000000019, %T A115941 10000500001,1000011000017,1000008000001,100000440000011, %U A115941 100000323000001,10000001100000011,10000000500000001,1000000011000000019,1000000008000000001,100000000660000000013 %N A115941 a(n) is the least prime whose representation contains a palindromic substring of length n. %H A115941 Michael S. Branicky, <a href="/A115941/b115941.txt">Table of n, a(n) for n = 1..25</a> %e A115941 a(6)=1011013 since it is the least prime that contains a palindromic substring (101101) of length 6. %o A115941 (Python) %o A115941 from sympy import isprime %o A115941 from itertools import product %o A115941 def pals_to_test(n, odd=True): %o A115941 if n <= 2: yield [2, 11][n-1] %o A115941 if odd: ruled_out = "024568" # can't be even or multiple of 5 %o A115941 else: ruled_out = "0" %o A115941 midrange = [[""], [str(i) for i in range(10)]] %o A115941 for p in product("0123456789", repeat=n//2): %o A115941 left = "".join(p) %o A115941 if len(left): %o A115941 if left[0] in ruled_out: continue %o A115941 for middle in midrange[n%2]: %o A115941 out = left+middle+left[::-1] %o A115941 if odd: yield out %o A115941 else: %o A115941 for last in "1379": yield out+last %o A115941 def a(n): %o A115941 palsgen = pals_to_test(n, n%2 == 1) %o A115941 while True: %o A115941 strpal = next(palsgen) %o A115941 pal = int(strpal) %o A115941 if isprime(pal): return pal %o A115941 print([a(n) for n in range(1, 18)]) # _Michael S. Branicky_, Feb 11 2021 %Y A115941 Cf. A056732. %K A115941 nonn,base %O A115941 1,1 %A A115941 _Giovanni Resta_, Feb 06 2006 %E A115941 a(18) and beyond from _Michael S. Branicky_, Feb 11 2021