This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115974 #70 Jan 22 2025 14:36:02 %S A115974 1,2,6,42,414,5058,72486,1182762,21573054,434358018,9565348806, %T A115974 228740050602,5904853053534,163728751178178,4855046674314726, %U A115974 153367360732387242,5143219420761900414,182530741698302811138,6835913695777897799046,269455018264860747728682,11152465473005099074500894,483617145128737549802831298 %N A115974 Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED). %C A115974 The number of diagrams of A000698 left if the connected improper diagrams are removed: a(n)<=A000698(n+1). G.f. is essentially the inversion of the G.f. of A000698. %C A115974 From _Groux Roland_, Mar 22 2011: (Start) %C A115974 a(n) is the INVERTi transform of A001147(n+2), starting at n=2. %C A115974 Let rho(x)=sqrt(x)*exp(-x/2)/sqrt(2*Pi); s(x)=integral(rho'(t)*log(abs(1-t/x)),t=0..infinity), and mu(x)=rho(x)/((s(x))^2+Pi^2*(rho(x))^2), then a(n+1) is the moment of order n for the measure of density mu(x) over the interval 0..infinity. %C A115974 (End) %C A115974 Vanishing diagrams: QED diagrams containing electron loops with an odd number of vertices are set to 0 (Furry theorem). See comments in A000698. This sequence (which is twice A167872(n-1) for n>=1) counts all the diagrams (vanishing and non-vanishing) for the self-energy function of QED. The sequence A005412 gives the number of non-vanishing diagrams for the self-energy. - _Robert Coquereaux_, Sep 12 2014 %D A115974 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971. %H A115974 Alois P. Heinz, <a href="/A115974/b115974.txt">Table of n, a(n) for n = 0..400</a> %H A115974 P. Cvitanovic, B. Lautrup and R. B. Pearson, <a href="http://www.nbi.dk/~predrag/papers/PRD18-78.pdf">The number and weights of Feynman diagrams</a>, Phys. Rev. D 18 (1978), 1939-1949. %H A115974 R. J. Mathar, <a href="http://dx.doi.org/10.1002/qua.21334">Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function</a>, Int. J. Quantum. Chem. 107 (10) (2007) 1975-1984. %H A115974 Adrian Ocneanu, <a href="http://arxiv.org/abs/1304.1263">On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives</a>; arXiv preprint arXiv:1304.1263 [math.CO], 2013. %H A115974 Wikipedia, <a href="https://en.wikipedia.org/wiki/Feynman_diagram">Feynman diagram</a> %F A115974 a(n) = A000698(n+1) - Sum_{m=1..n-1} a(m)*A000698(n+1-m). %F A115974 1-Sum_{n>=1} a(n)*x^n = 1/(1+Sum_{n>=1} A000698(n+1)*x^n) (G.f.) %F A115974 G.f. 2 - Q(0) where Q(k) = 1 - (k+2)*x/Q(k+1); (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Aug 20 2012 %F A115974 G.f. 2 - x - x/(Q(0)-1) where Q(k) = 1 + (4*k+1)*x/(1 - (4*k+3)*x/((4*k+3)*x + 1/Q(k+1))); (continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Sep 12 2012 %F A115974 G.f.: 2 + x/(G(0)-1) where G(k) = 1 - x*(k+1)/G(k+1); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 10 2012 %F A115974 G.f.: 2 - G(0) where G(k) = 1 + (2*k+1)*x - x*(2*k+3)/G(k+1); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 26 2012 %F A115974 G.f.: 2 - x - Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 21 2013 %F A115974 Call Sf the G.f. for the sequence 1, 2, 10, 74, ..., i.e., A000698 with first term (equal to 1) dropped. Call Sigmaf the G.f. for the sequence 0, 2, 6, 42, ..., i.e., this sequence A115974 with a first term of order 0 (equal to 0) added. Then Sf = 1/(1-Sigmaf). - _Robert Coquereaux_, Sep 14 2014 %F A115974 a(n) ~ 2^(n + 3/2) * n^(n+1) / exp(n). - _Vaclav Kotesovec_, Jan 02 2019 %e A115974 There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams. %p A115974 A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end: %p A115974 A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end: %p A115974 for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # _R. J. Mathar_, Apr 24 2006 %t A115974 (* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* _Jean-François Alcover_, Jul 10 2017 *) %Y A115974 Cf. A000698, A005411, A005412, A167872. %K A115974 nonn %O A115974 0,2 %A A115974 _R. J. Mathar_, Mar 15 2006 %E A115974 More terms from _R. J. Mathar_, Apr 24 2006, Nov 07 2006 %E A115974 Name and definition clarified by _Robert Coquereaux_, Sep 14 2014 %E A115974 a(0)=1 prepended by _Alois P. Heinz_, Jun 22 2015