cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115977 Expansion of elliptic modular function lambda in powers of the nome q.

This page as a plain text file.
%I A115977 #61 Feb 16 2025 08:33:00
%S A115977 16,-128,704,-3072,11488,-38400,117632,-335872,904784,-2320128,
%T A115977 5702208,-13504512,30952544,-68901888,149403264,-316342272,655445792,
%U A115977 -1331327616,2655115712,-5206288384,10049485312,-19115905536,35867019904,-66437873664
%N A115977 Expansion of elliptic modular function lambda in powers of the nome q.
%C A115977 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D A115977 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
%D A115977 J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.
%D A115977 A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, eq. (37).
%H A115977 Seiichi Manyama, <a href="/A115977/b115977.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from G. C. Greubel)
%H A115977 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A115977 A. Dieckmann, <a href="http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html">Collection of Infinite Products and Series</a>
%H A115977 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A115977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H A115977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EllipticLambdaFunction.html">Elliptic Lambda Function</a>
%H A115977 Wolfram Research <a href="http://functions.wolfram.com/EllipticFunctions/EllipticTheta1/18/01/01/">Basic Algebraic Identities</a> Relations involving squares, 1st formula
%F A115977 Expansion of Jacobi elliptic parameter m = k^2 = (theta_2(q) / theta_3(q))^4 in powers of the nome q.
%F A115977 Expansion of 16 * q * (psi(q^2) / phi(q))^4 = 16 * q * (psi(q^2) / psi(q))^8 = 16 * q * (psi(q) / phi(q))^8 = 16 * q * (psi(-q) / phi(-q^2))^8 = 16 * q / (chi(q) * chi(-q^2))^8 = 16 * q * (f(-q^4) / f(q))^8  in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
%F A115977 Expansion of 16 * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^8 in powers of q.
%F A115977 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * (1 - v)^2 - 16 * v * (1 - u).
%F A115977 lambda( -1 / tau ) = 1 - lambda( tau ) (see A128692).
%F A115977 G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692.
%F A115977 G.f.: 16 * q * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^8.
%F A115977 a(n) = 16 * A005798(n). a(n) = -(-1)^n * A014972(n) unless n=0.
%F A115977 a(n) = -(-1)^n * A132136(n). - _Michael Somos_, Jun 03 2015
%F A115977 Empirical: Sum_{n>=1}(exp(-2*Pi)^n*a(n)) = 17 - 12*sqrt(2). - _Simon Plouffe_, Feb 20 2011
%F A115977 a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - _Vaclav Kotesovec_, Apr 06 2018
%F A115977 The g.f. A(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... satisfies A(q) + A(-q) = A(q)*A(-q). - _Peter Bala_, Sep 26 2023
%e A115977 G.f. = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + 11488*q^5 - 38400*q^6 + 117632*q^7 - ...
%t A115977 a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ @ x, {x, 0, n}];
%t A115977 a[ n_] := If[ n < 0, 0, SeriesCoefficient[ ModularLambda[ Log[q] / (Pi I)], {q, 0, n}]];
%t A115977 a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q])^4, {q, 0, n}];
%t A115977 a[ n_] := SeriesCoefficient[ 1/16 (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q^2])^8, {q, 0, n}]; (* _Michael Somos_, May 26 2016 *)
%o A115977 (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); 16 * polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))};
%Y A115977 Cf. A005798, A014972, A128692, A132136.
%K A115977 sign
%O A115977 1,1
%A A115977 _Michael Somos_, Feb 09 2006