cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115995 Sum of the sizes of the Durfee squares of all partitions of n.

This page as a plain text file.
%I A115995 #52 Feb 16 2025 08:33:00
%S A115995 0,1,2,3,6,9,16,23,36,52,76,106,152,207,286,386,522,691,920,1202,1576,
%T A115995 2038,2636,3373,4320,5478,6944,8738,10984,13717,17116,21232,26308,
%U A115995 32441,39944,48977,59970,73147,89090,108151,131090,158417,191166,230049,276444
%N A115995 Sum of the sizes of the Durfee squares of all partitions of n.
%C A115995 Also sum of positive cranks of all partitions of n, n>1; see A064391. - _Vladeta Jovovic_, Oct 20 2006
%C A115995 This sequence, its author and the author of the above comment were mentioned in the Andrews-Chan-Kim paper, where it is called C_1 (see the remark on page 6). - _Omar E. Pol_, Apr 06 2012
%D A115995 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
%D A115995 G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
%H A115995 Alois P. Heinz, <a href="/A115995/b115995.txt">Table of n, a(n) for n = 0..3000</a>
%H A115995 George E. Andrews, <a href="http://www.math.psu.edu/andrews/pdf/80.pdf">Partitions and Durfee Dissection</a>
%H A115995 George E. Andrews, Song Heng Chan, and Byungchan Kim, <a href="http://www.math.psu.edu/andrews/pdf/292.pdf">The odd moments of ranks and cranks</a>
%H A115995 George E. Andrews, Frank G. Garvan, and Jie Liang, <a href="http://qseries.org/fgarvan/papers/spt-parity.pdf">Self-conjugate vector partitions and the parity of the spt-function</a>.
%H A115995 Atul Dixit, Bibekananda Maji, <a href="https://arxiv.org/abs/1806.04424">Partition implications of a new three parameter q-series identity</a>, arXiv:1806.04424 [math.CO], 2018.
%H A115995 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square.</a>
%F A115995 G.f.: Sum_{k>=1} (k*z^(k^2) / Product_{j=1..k} (1 - z^j)^2 ).
%F A115995 a(n) = Sum_{k=1..floor(sqrt(n))} k*A115994(n,k).
%F A115995 Convolution of A067742 and A000041. - _Vladeta Jovovic_, Oct 20 2006
%F A115995 a(n) = A195012(n) + A209616(n), n >= 1. - _Omar E. Pol_, Apr 06 2012
%F A115995 a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - _Vaclav Kotesovec_, Jan 02 2019
%e A115995 a(4) = 6 because the partitions [4], [3,1], [2,2], [2,1,1] and [1,1,1,1] of 4 have Durfee squares of sizes 1,1,2,1 and 1, respectively.
%p A115995 g:= add(k*z^(k^2)/mul((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,56): seq(coeff(gser,z,n), n=0..52);
%p A115995 # second Maple program:
%p A115995 b:= proc(n, i) option remember;
%p A115995       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
%p A115995     end:
%p A115995 a:= n-> add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..isqrt(n)):
%p A115995 seq(a(n), n=0..70);  # _Alois P. Heinz_, Apr 09 2012
%p A115995 # Third Maple program, based on Theorem 1 of Andrews-Chan-Kim:
%p A115995 M:=101;
%p A115995 qinf:=mul(1-q^i,i=1..M);
%p A115995 qinf:=series(qinf,q,M);
%p A115995 C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M);
%p A115995 C1:=series(C1/qinf,q,M);
%p A115995 seriestolist(%); # _N. J. A. Sloane_, Sep 04 2012
%t A115995 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]] ; a[n_] := Sum[ Sum[b[k, d]*b[n - d^2 - k, d], {k, 0, n - d^2}]*d, {d, 1, Sqrt[n]}]; Table [a[n], {n, 0, 70}] (* _Jean-François Alcover_, Jan 16 2015, after _Alois P. Heinz_ *)
%o A115995 (PARI) N=66; x='x+O('x^N); concat([0], Vec( sum(n=0,N, n*x^(n^2) / prod(k=1,n, 1-x^k)^2))) \\ _Joerg Arndt_, Mar 26 2014
%o A115995 (Sage)
%o A115995 [sum(p.frobenius_rank() for p in Partitions(n)) for n in range(45)] # _Peter Luschny_, Sep 15 2014
%Y A115995 Cf. A115994, A115720, A115721, A115722.
%K A115995 nonn
%O A115995 0,3
%A A115995 _Emeric Deutsch_, Feb 11 2006
%E A115995 Edited and verified by _Franklin T. Adams-Watters_, Mar 11 2006