cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).

This page as a plain text file.
%I A116071 #35 May 05 2025 03:55:39
%S A116071 1,1,1,3,2,1,10,9,3,1,41,40,18,4,1,196,205,100,30,5,1,1057,1176,615,
%T A116071 200,45,6,1,6322,7399,4116,1435,350,63,7,1,41393,50576,29596,10976,
%U A116071 2870,560,84,8,1,293608,372537,227592,88788,24696,5166,840,108,9,1
%N A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
%C A116071 Column 0 = A000248 (Number of forests with n nodes and height at most 1).
%C A116071 Column 1 = A052512 (Number of labeled trees of height 2).
%C A116071 Row sums = A080108 (Sum_{k=1..n} k^(n-k) * C(n-1,k-1)).
%C A116071 Central terms = A116072(n) = (n+1) * A000108(n) * A000248(n).
%C A116071 From _Peter Bala_, Sep 13 2012: (Start)
%C A116071 For commuting lower unitriangular matrix A and lower triangular matrix B we define A raised to the matrix power B, denoted by A^B, to be the lower unitriangular matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential defined by the power series
%C A116071   Exp(A) = 1 + A + A^2/2! + A^3/3! + ...
%C A116071 and the matrix logarithm Log(A) is defined by the series
%C A116071   Log(A) = (A-1) - 1/2*(A-1)^2/2 + 1/3*(A-1)^3 - ....
%C A116071 Let A = [f(x),x] and B = [g(x),x] be exponential Riordan arrays in the Appell subgroup and suppose f(0) = 1. Then A and B commute and A^B is the exponential Riordan array [exp(g(x)*log(f(x))),x], also belonging to the Appell group. In the present case we are taking A = B = [exp(x),x], equal to the Pascal triangle A007318.
%C A116071 For any lower unitriangular matrix A (with, say, rational entries) the infinite tower of powers A^(A^(A^(...))) is well-defined (and also has rational entries). An example is given in the Formula section. (End)
%H A116071 Paul D. Hanna, <a href="/A116071/b116071.txt">Table of n, a(n) for n = 0..1080 (rows 0..45 of flattened triangle).</a>
%F A116071 E.g.f.: exp( x*exp(x) + x*y ).
%F A116071 From _Peter Bala_, Sep 13 2012: (Start)
%F A116071 Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
%F A116071 The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle. (End)
%F A116071 O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - _Paul D. Hanna_, Aug 03 2014
%F A116071 G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - _Paul D. Hanna_, Aug 03 2014
%F A116071 T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - _Paul D. Hanna_, Aug 03 2014
%F A116071 Infinitesimal generator is A216973. - _Peter Bala_, Feb 13 2017
%e A116071 E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
%e A116071   + (10 + 9*y + 3*y^2 + y^3)*x^3/3!
%e A116071   + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
%e A116071   + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
%e A116071 where E(x,y) = exp(x*y) * exp(x*exp(x)).
%e A116071 O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
%e A116071   + (10 + 9*y + 3*y^2 + y^3)*x^3
%e A116071   + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
%e A116071   + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
%e A116071 where
%e A116071 A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
%e A116071 Triangle begins:
%e A116071   1;
%e A116071   1, 1;
%e A116071   3, 2, 1;
%e A116071   10, 9, 3, 1;
%e A116071   41, 40, 18, 4, 1;
%e A116071   196, 205, 100, 30, 5, 1;
%e A116071   1057, 1176, 615, 200, 45, 6, 1;
%e A116071   6322, 7399, 4116, 1435, 350, 63, 7, 1;
%e A116071   41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
%e A116071   293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
%t A116071 (* The function RiordanArray is defined in A256893. *)
%t A116071 RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *)
%o A116071 (PARI) /* By definition C^C: */
%o A116071 {T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
%o A116071 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o A116071 (PARI) /* From e.g.f.: */
%o A116071 {T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
%o A116071 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o A116071 (PARI) /* From o.g.f. (_Paul D. Hanna_, Aug 03 2014): */
%o A116071 {T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
%o A116071 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o A116071 (PARI) /* From row polynomials (_Paul D. Hanna_, Aug 03 2014): */
%o A116071 {T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
%o A116071 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o A116071 (PARI) /* From formula for T(n,k) (_Paul D. Hanna_, Aug 03 2014): */
%o A116071 {T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
%o A116071 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%Y A116071 Cf. A000248, A052512, A080108, A116072, A215652.
%Y A116071 Cf. A080108, A216689, A240165, A245834, A245835, A216973.
%K A116071 nonn,tabl
%O A116071 0,4
%A A116071 _Paul D. Hanna_, Feb 03 2006