cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115429 Numbers k such that the concatenation of k with k+8 gives a square.

Original entry on oeis.org

6001, 6433, 11085116, 44496481, 96040393, 115916930617, 227007035017, 274101929528, 434985419768, 749978863753, 996004003993, 1365379857457948, 1410590590957816, 1762388551055953, 2307340946901148, 2700383162251217
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

Also numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 2.
Also numbers k such that k concatenated with k+4 gives the product of two numbers which differ by 4.
Also numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 6.
Also numbers k such that k concatenated with k-8 gives the product of two numbers which differ by 8.

Examples

			6001//6009 = 7747^2, where // denotes concatenation.
96040393//96040400 = 98000200 * 98000202.
96040393//96040397 = 98000199 * 98000203.
96040393//96040392 = 98000198 * 98000204.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116112 Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 7.

Original entry on oeis.org

17, 35, 10408517, 45884051, 62918301, 1116290522645838319925, 1491109615209578451401, 2254276950187476704727, 2758431647767103545151, 3768131911733856383477, 4434103687048263321737, 5230580700713956424051
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 5.
Also numbers k such that k concatenated with k+3 gives the product of two numbers which differ by 3.
Also numbers k such that k concatenated with k+5 gives the product of two numbers which differ by 1.

Examples

			62918301//62918300 = 79321055 * 79321060, where // denotes concatenation.
62918301//62918304 = 79321056 * 79321059.
62918301//62918306 = 79321057 * 79321058.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116126 Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 8.

Original entry on oeis.org

10, 6752089, 6448802889351008245, 18894512461523256139943105859903480218905, 31958875438439894736354375209245786214798
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116244 Numbers k such that k * (k + 8) is the concatenation of two numbers m and m-7.

Original entry on oeis.org

94, 461, 532, 714, 818, 994, 3424, 6569, 9994, 90903, 99994, 980198, 999994, 3636357, 6363636, 9999994, 41176464, 58823529, 99999994, 413533834, 426573426, 428571422, 432620005, 567379988, 571428571, 573426567
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Aug 22 2023: (Start)
Numbers k = a*c-1 such that for some positive integers a,b,c,d,e we have
10^e + 1 = a*b
10^(e-1) <= c*d < 10^e
a*c + 6 = b*d.
Includes 10^k-6 for k >= 2. (End)

Crossrefs

Programs

  • Maple
    F:= proc(d) local R, t,alpha, beta, gamma, delta, B,C,n,m,i0,i,gamma0, delta0;
       R:= NULL;
       t:= 10^d+1;
       for alpha in numtheory:-divisors(t) do
         beta:= t/alpha;
         if igcd(alpha,beta) > 1 then next fi;
         delta0:= 6/beta mod alpha;
         gamma0:= (beta*delta0-6)/alpha;
         B:= 2*alpha*gamma0 + 6;
         C:= gamma0*delta0 - 10^(d-1) - 7;
         if C < 0 then i0:= 0 else i0:= ceil((-B + sqrt(B^2-4*t*C))/(2*t)) fi;
         for i from i0 do
           gamma:= gamma0 + i*beta;
           delta:= delta0 + i*alpha;
           m:= gamma*delta;
           if m -7 >= 10^d then break fi;
           if m - 7 >= 10^(d-1) then R:= R, alpha*gamma-1 fi;
         od
       od;
       sort(convert({R},list))
    end proc:
    seq(op(F(d)),d=1..10); # Robert Israel, Aug 22 2023
  • Mathematica
    a[n_] := Module[{solutions = {}, kvalues, e = 2}, While[Length[solutions] < n, sol = Solve[{a*b == 10^e + 1, 10^(e - 1) <= c*d < 10^e, a*c + 6 == b*d, a > 0, b > 0, c > 0, d > 0}, {a, b, c, d}, Integers]; kvalues = (a*c - 1) /. sol; solutions = Union[solutions, kvalues]; e++]; Take[solutions, n]]; a[26] (* Robert P. P. McKone, Aug 22 2023 *)

A116114 Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 9.

Original entry on oeis.org

13, 493, 607, 629, 757, 17927, 33247, 93869, 19467217, 31223879, 72757727, 13454739732766891651472740499, 40093333713615672956030023507, 48089152118689474641229584727, 66424317743191484432891678269
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-5 of 5 results.