A115429
Numbers k such that the concatenation of k with k+8 gives a square.
Original entry on oeis.org
6001, 6433, 11085116, 44496481, 96040393, 115916930617, 227007035017, 274101929528, 434985419768, 749978863753, 996004003993, 1365379857457948, 1410590590957816, 1762388551055953, 2307340946901148, 2700383162251217
Offset: 1
6001//6009 = 7747^2, where // denotes concatenation.
96040393//96040400 = 98000200 * 98000202.
96040393//96040397 = 98000199 * 98000203.
96040393//96040392 = 98000198 * 98000204.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115440.
A116112
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 7.
Original entry on oeis.org
17, 35, 10408517, 45884051, 62918301, 1116290522645838319925, 1491109615209578451401, 2254276950187476704727, 2758431647767103545151, 3768131911733856383477, 4434103687048263321737, 5230580700713956424051
Offset: 1
62918301//62918300 = 79321055 * 79321060, where // denotes concatenation.
62918301//62918304 = 79321056 * 79321059.
62918301//62918306 = 79321057 * 79321058.
A116126
Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 8.
Original entry on oeis.org
10, 6752089, 6448802889351008245, 18894512461523256139943105859903480218905, 31958875438439894736354375209245786214798
Offset: 1
A116244
Numbers k such that k * (k + 8) is the concatenation of two numbers m and m-7.
Original entry on oeis.org
94, 461, 532, 714, 818, 994, 3424, 6569, 9994, 90903, 99994, 980198, 999994, 3636357, 6363636, 9999994, 41176464, 58823529, 99999994, 413533834, 426573426, 428571422, 432620005, 567379988, 571428571, 573426567
Offset: 1
-
F:= proc(d) local R, t,alpha, beta, gamma, delta, B,C,n,m,i0,i,gamma0, delta0;
R:= NULL;
t:= 10^d+1;
for alpha in numtheory:-divisors(t) do
beta:= t/alpha;
if igcd(alpha,beta) > 1 then next fi;
delta0:= 6/beta mod alpha;
gamma0:= (beta*delta0-6)/alpha;
B:= 2*alpha*gamma0 + 6;
C:= gamma0*delta0 - 10^(d-1) - 7;
if C < 0 then i0:= 0 else i0:= ceil((-B + sqrt(B^2-4*t*C))/(2*t)) fi;
for i from i0 do
gamma:= gamma0 + i*beta;
delta:= delta0 + i*alpha;
m:= gamma*delta;
if m -7 >= 10^d then break fi;
if m - 7 >= 10^(d-1) then R:= R, alpha*gamma-1 fi;
od
od;
sort(convert({R},list))
end proc:
seq(op(F(d)),d=1..10); # Robert Israel, Aug 22 2023
-
a[n_] := Module[{solutions = {}, kvalues, e = 2}, While[Length[solutions] < n, sol = Solve[{a*b == 10^e + 1, 10^(e - 1) <= c*d < 10^e, a*c + 6 == b*d, a > 0, b > 0, c > 0, d > 0}, {a, b, c, d}, Integers]; kvalues = (a*c - 1) /. sol; solutions = Union[solutions, kvalues]; e++]; Take[solutions, n]]; a[26] (* Robert P. P. McKone, Aug 22 2023 *)
A116114
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 9.
Original entry on oeis.org
13, 493, 607, 629, 757, 17927, 33247, 93869, 19467217, 31223879, 72757727, 13454739732766891651472740499, 40093333713615672956030023507, 48089152118689474641229584727, 66424317743191484432891678269
Offset: 1
Showing 1-5 of 5 results.
Comments