cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116098 Numbers k such that k concatenated with k-9 gives the product of two numbers which differ by 6.

Original entry on oeis.org

11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 100000000001, 1000000000001
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Aug 13 2018: (Start)
Contained in, and apparently identical, to A116129.
Numbers k such that k*(10^d+1) is a square, where k-9 has d decimal digits.
(End)

Examples

			100000001//99999992 = 99999998 * 100000004, where // denotes
concatenation.
		

Crossrefs

Programs

  • Maple
    g:= proc(d) local r,c,a,b;
       r:= mul(t[1],t=select(s -> s[2]::odd, ifactors(10^d+1)[2]))
       c:= ceil((10^(d-1)+9)/r);
       a:= isqrt(c);
       if a^2 < c then a:= a+1 fi;
       c:= floor((10^d+8)/r);
       b:= isqrt(c);
       if b^2 > c then b:= b-1 fi;
       seq(r*y^2, y = a..b)
    end proc:
    seq(g(d),d=1..60); # Robert Israel, Aug 13 2018

A116129 Numbers k such that k concatenated with k-4 gives the product of two numbers which differ by 4.

Original entry on oeis.org

11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 100000000001, 1000000000001
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Aug 13 2018: (Start)
Contains, and appears to be identical to, A116098.
Numbers k such that (10^d+1)*k is a square, where k-4 has d digits. (End)

Examples

			100000001//99999997 = 99999999 * 100000003, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    g:= proc(d) local r,c,a,b;
       r:= mul(t[1],t=select(s -> s[2]::odd, ifactors(10^d+1)[2]));
       c:= ceil((10^(d-1)+4)/r);
       a:= isqrt(c);
       if a^2 < c then a:= a+1 fi;
       c:= floor((10^d+3)/r);
       b:= isqrt(c);
       if b^2 > c then b:= b-1 fi;
       seq(r*y^2, y = a..b)
    end proc:
    map(g, [$1..60]); # Robert Israel, Aug 13 2018

A116122 Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 3.

Original entry on oeis.org

92185, 1453156572932210152879253333913, 3829098407015032018435618903285, 1017438814759112270449904796121753809
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			92185//92180 = 96012 * 96015, where // denotes concatenation.
		

Crossrefs

A116143 Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 3.

Original entry on oeis.org

10, 100, 132, 406, 510, 852, 1000, 7930, 10000, 66942, 100000, 113322, 440056, 1000000, 5289256, 10000000, 58477510, 100000000, 111333222, 164378892, 183673470, 200444410, 206611570, 224376732, 277008310, 297520662
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116259 n times n+3 gives the concatenation of two numbers m and m-4.

Original entry on oeis.org

7282817, 8171727, 4550754022124826466, 5449245977875173532, 8176518705147900805, 8951999555715882882349355522888, 9861090464806791973258446431979
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8171727 * 8171730 = 6677714//6677710, where // denotes
concatenation.
		

Crossrefs

Showing 1-5 of 5 results.