This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116136 #17 Feb 19 2024 20:59:42 %S A116136 9,99,183,328,528,715,999,6099,9999,13224,40495,99999,106755,453288, %T A116136 999999,2066115,2975208,9999999,22145328,28027683,99999999,110213248, %U A116136 110667555,147928995,178838403,226123528,275074575,333052608,378698224,445332888,446245635,518348515 %N A116136 Numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 4. %C A116136 Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 2. %H A116136 Chai Wah Wu, <a href="/A116136/b116136.txt">Table of n, a(n) for n = 1..10000</a> %e A116136 8315420899//8315420896 = 9118892968 * 9118892972, where // denotes concatenation. %o A116136 (Python) %o A116136 from itertools import count, islice %o A116136 from sympy import sqrt_mod %o A116136 def A116136_gen(): # generator of terms %o A116136 for j in count(0): %o A116136 b = 10**j %o A116136 a = b*10+1 %o A116136 for k in sorted(sqrt_mod(1,a,all_roots=True)): %o A116136 if a*(b+3) <= k**2-1 < a*(a+2): %o A116136 yield (k**2-1)//a %o A116136 A116136_list = list(islice(A116136_gen(),40)) # _Chai Wah Wu_, Feb 19 2024 %Y A116136 Cf. A116129, A115431, A116099, A115426, A116267. %Y A116136 Cf. also A102567, A116154, A116130, A116286. %K A116136 nonn,base %O A116136 1,1 %A A116136 _Giovanni Resta_, Feb 06 2006 %E A116136 Edited by _N. J. A. Sloane_, Apr 15 2007 %E A116136 a(29)-a(32) from _Chai Wah Wu_, Feb 19 2024