This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116207 #16 Nov 28 2024 11:08:48 %S A116207 493,607,629,757,17927,33247,93869,19467217,31223879,72757727, %T A116207 13454739732766891651472740499,40093333713615672956030023507, %U A116207 48089152118689474641229584727,66424317743191484432891678269 %N A116207 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 5. %C A116207 From _Robert Israel_, Nov 27 2024: (Start) %C A116207 If 10^d + 1 has a prime factor p such that 53 is not a square mod p, then there are no terms k where k + 7 has d digits. %C A116207 For example, there are no terms where d == 2 (mod 4), since in that case 10^d + 1 is divisible by 101, and 53 is not a square mod 101. (End) %H A116207 Robert Israel, <a href="/A116207/b116207.txt">Table of n, a(n) for n = 1..85</a> (all terms with up to 113 digits). %e A116207 72757727//72757734 = 85298138 * 85298143, where // denotes concatenation. %p A116207 f:= proc(d) # terms where k+7 has d digits %p A116207 local S,x,R,k; %p A116207 S:= map(t -> rhs(op(t)), [msolve(x*(x+5) = 7, 10^d+1)]); %p A116207 R:= NULL: %p A116207 for x in S do %p A116207 k := (x*(x+5)-7)/(10^d+1); %p A116207 if ilog10(k+7) = d - 1 then R:= R,k fi %p A116207 od: %p A116207 op(sort([R])) %p A116207 end proc: %p A116207 map(f, [$1..31]); # _Robert Israel_, Nov 27 2024 %Y A116207 Cf. A116167, A116114, A116200, A116173, A116208, A116180, A116338. %K A116207 nonn,base,look %O A116207 1,1 %A A116207 _Giovanni Resta_, Feb 06 2006