cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116202 Numbers k such that k concatenated with k+6 gives the product of two numbers which differ by 8.

Original entry on oeis.org

7, 54, 234, 267, 894, 58227, 7962242238271227055830015496107, 60153956829051761181170060654114714579377214308482459, 2019668016997743800626449453386765007975459365956534868322001037107, 3031524678136833532602149525055953135725227119574025423809994922862
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			58227//58233 = 76303 * 76311, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116202_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(22,a,all_roots=True)):
                if a*(b-6) <= k**2-22 < a*(a-7) and k>4:
                    yield (k**2-22)//a
    A116202_list = list(islice(A116202_gen(),7)) # Chai Wah Wu, Feb 21 2024

Extensions

a(8)-a(10) from Chai Wah Wu, Feb 21 2024

A116341 k times k+8 gives the concatenation of two numbers m and m+7.

Original entry on oeis.org

82, 314, 679, 756, 952, 965, 3205775326418807415637845823789043451, 3230931606745075612526180113373983267, 3750967203300732832735999247776048870, 6249032796699267167264000752223951123, 6769068393254924387473819886626016726, 6794224673581192584362154176210956542
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			965 * 973 = 938//945, where // denotes concatenation, so 965 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116341_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(23,a,all_roots=True)):
                if a*(b-7) <= k**2-23 < a*(a-8) and k>4:
                    yield k-4
    A116341_list = list(islice(A116341_gen(),20)) # Chai Wah Wu, Feb 21 2024

Extensions

a(10)-a(12) from Chai Wah Wu, Feb 21 2024

A116209 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 7.

Original entry on oeis.org

1, 13, 41, 653, 2287, 2723, 5491, 23240971, 26823191, 60249661, 1841968537, 2009317771, 3044234903, 3258336353, 8166731261, 9481619237, 1281071245505271100098621541, 1551605670846640136726379653
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116211 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 9.

Original entry on oeis.org

1953, 3115, 6153, 1016574047215119910181525023, 2440558249789368730986767575, 2560156942576450203707692923, 4639822375038697733267413875, 4868700733912235016077891029
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			6153//6160 = 7840 * 7849, where // denotes concatenation.
		

Crossrefs

A116223 Numbers k such that k concatenated with k+9 gives the product of two numbers which differ by 8.

Original entry on oeis.org

136, 399, 600, 744, 8184, 66951, 134199, 401536, 5289264, 12456744, 41868519, 113342199, 115655064, 142598664, 160143051, 206611575, 227626176, 273422475, 297520656, 359785504, 387353899, 435493131, 440015536
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-5 of 5 results.