cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116244 Numbers k such that k * (k + 8) is the concatenation of two numbers m and m-7.

Original entry on oeis.org

94, 461, 532, 714, 818, 994, 3424, 6569, 9994, 90903, 99994, 980198, 999994, 3636357, 6363636, 9999994, 41176464, 58823529, 99999994, 413533834, 426573426, 428571422, 432620005, 567379988, 571428571, 573426567
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Aug 22 2023: (Start)
Numbers k = a*c-1 such that for some positive integers a,b,c,d,e we have
10^e + 1 = a*b
10^(e-1) <= c*d < 10^e
a*c + 6 = b*d.
Includes 10^k-6 for k >= 2. (End)

Crossrefs

Programs

  • Maple
    F:= proc(d) local R, t,alpha, beta, gamma, delta, B,C,n,m,i0,i,gamma0, delta0;
       R:= NULL;
       t:= 10^d+1;
       for alpha in numtheory:-divisors(t) do
         beta:= t/alpha;
         if igcd(alpha,beta) > 1 then next fi;
         delta0:= 6/beta mod alpha;
         gamma0:= (beta*delta0-6)/alpha;
         B:= 2*alpha*gamma0 + 6;
         C:= gamma0*delta0 - 10^(d-1) - 7;
         if C < 0 then i0:= 0 else i0:= ceil((-B + sqrt(B^2-4*t*C))/(2*t)) fi;
         for i from i0 do
           gamma:= gamma0 + i*beta;
           delta:= delta0 + i*alpha;
           m:= gamma*delta;
           if m -7 >= 10^d then break fi;
           if m - 7 >= 10^(d-1) then R:= R, alpha*gamma-1 fi;
         od
       od;
       sort(convert({R},list))
    end proc:
    seq(op(F(d)),d=1..10); # Robert Israel, Aug 22 2023
  • Mathematica
    a[n_] := Module[{solutions = {}, kvalues, e = 2}, While[Length[solutions] < n, sol = Solve[{a*b == 10^e + 1, 10^(e - 1) <= c*d < 10^e, a*c + 6 == b*d, a > 0, b > 0, c > 0, d > 0}, {a, b, c, d}, Integers]; kvalues = (a*c - 1) /. sol; solutions = Union[solutions, kvalues]; e++]; Take[solutions, n]]; a[26] (* Robert P. P. McKone, Aug 22 2023 *)