cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116205 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 3.

Original entry on oeis.org

1, 81, 1353, 3997, 7723, 23761, 26271, 76771, 1415683, 3890571, 8495497, 1066870443, 1239366513, 4198438981, 4534273891, 6502317141, 6918679731, 2199164200036329043, 2820114781174460091, 5500888421709400741
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+9 gives the product of two numbers which differ by 1.
Also numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 7.

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116268 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

81, 77394227, 89158933, 36623663376237623663376335, 37633762366336633762366235, 62366237633663366237633761, 63376336623762376336623661, 86194223018927804587702128, 88063202723646452838040443, 35574229497606875609044578088011, 35693849662968953146129859753682, 42317841210726174031503123524229
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			89158933 * 89158938 = 79493157//79493154, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local k, K;
          K:= map(t -> rhs(op(t)), [msolve(k^2+5*k+3=0,10^d+1)]);
          op(sort(select(k -> k^2 + 5*k + 3 >= (10^d+1)*10^(d-1), K)));
    end proc:
    map(f, [$1..62]); # Robert Israel, Jul 10 2025

Extensions

More terms from Robert Israel, Jul 10 2025

A116263 n times n+7 gives the concatenation of two numbers m and m-4.

Original entry on oeis.org

83, 76980, 714687, 952311, 90438188, 96320541, 32980078899026, 34346653774235, 42816188292270, 42881990066485, 57118009933509, 57183811707724, 65653346225759, 67019921100968, 81321742742207
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			96320541 * 96320548 = 92776472//92776468, where // denotes
concatenation.
		

Crossrefs

A116270 n times n+8 gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

62, 45211539, 54788454, 78317866, 72388446037855609175404256, 73247326752475247326752671, 75267524732673267524732471, 76126405447292905676080886, 42053270820132695893502981749302
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			78317866 * 78317874 = 61336887//61336884, where // denotes
concatenation.
		

Crossrefs

A116283 k times k+7 gives the concatenation of two numbers m and m-1.

Original entry on oeis.org

7, 30, 64, 42753, 57241, 75423, 425072, 574922, 979528, 4301393, 5698601, 7028666, 4925000747, 5074999247, 7748266574, 8511881484, 8814851184, 7059602159672, 7106167933828, 7439286611621, 7485852385777
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Python
    def ok(n):
        s = str(n*(n+7)); h = (len(s)+1)//2; return int(s[:h])-1 == int(s[h:])
    print(list(filter(ok, range(2, 10**6)))) # Michael S. Branicky, Jul 30 2021
Showing 1-5 of 5 results.