A116286 Numbers k such that k*(k+2) gives the concatenation of a number m with itself.
9, 99, 427, 572, 726, 845, 999, 7809, 9999, 36364, 63635, 99999, 326733, 673266, 999999, 4545453, 5454546, 9999999, 47058822, 52941177, 99999999, 331983806, 332667333, 384615385, 422892897, 475524476, 524475523, 577107102, 615384614, 667332666, 668016193, 719964245, 758241757, 804511279
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= proc(d,m) local R,t,a,b,x,q; t:= 10^d+1; R:= NULL; for a in numtheory:-divisors(t) do b:= t/a; if igcd(a,b) > 1 then next fi; for x from chrem([0,-m],[a,b]) by t do q:= x*(x+m)/t; if q >= 10^d then break fi; if q >= 10^(d-1) then R:= R, x fi; od od; sort(convert({R},list)); end proc: A:=[seq(op(q(d,2)),d=1..10)]; # Robert Israel, Apr 08 2025
Extensions
More terms from Robert Israel, Apr 08 2025
Comments