cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116179 Numbers k such that k concatenated with k+3 gives the product of two numbers which differ by 5.

Original entry on oeis.org

1, 3, 81, 1353, 3997, 7723, 23761, 26271, 76771, 1415683, 3890571, 8495497, 1066870443, 1239366513, 4198438981, 4534273891, 6502317141, 6918679731, 2199164200036329043, 2820114781174460091, 5500888421709400741
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116309 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m+3.

Original entry on oeis.org

40, 58, 32262232, 67737766, 79321056, 3341093417798787499093, 3861488851737861033961, 4747922651210186579787, 5252077348789813420211, 6138511148262138966037, 6658906582201212500905, 7232275368591793618231
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79321056 * 79321059 = 62918301//62918304, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    As:= {}:
    for m from 2 to 62 do
       acands:= map(t -> rhs(op(t)), [msolve(a*(a+3)=3, 10^m+1)]);
       bcands:= map(t -> t*(t+3) mod 10^m, acands);
       good:= select(t -> bcands[t]>=10^(m-1), [$1..nops(acands)]);
       As:= As union convert(acands[good],set);
    od:
    sort(convert(As,list)); # Robert Israel, Aug 20 2019

A116324 Numbers k such that k * (k+5) gives the concatenation of two numbers m and m+5.

Original entry on oeis.org

31, 65, 42754, 57242, 75424, 425073, 574923, 979529, 4301394, 5698602, 7028667, 4925000748, 5074999248, 7748266575, 8511881485, 8814851185, 7059602159673, 7106167933829, 7439286611622, 7485852385778, 46791112884926
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(d) local S,R,r,s,m,n;
      r:= 10^d+1;
      S:= map(t -> rhs(op(t)), [msolve(n*(n+5)=5,r)]);
      S:= select(proc(s) local t; t:= (s*(s+5)-5)/r; t+5 >= (r-1)/10 and t+5 < r-1 end proc, S);
      op(sort(S));
    end proc:
    map(f, [$1..20]); # Robert Israel, Jun 21 2024

A116303 n times n+5 gives the concatenation of two numbers m and m+2.

Original entry on oeis.org

3, 84, 76981, 714688, 952312, 90438189, 96320542, 32980078899027, 34346653774236, 42816188292271, 42881990066486, 57118009933510, 57183811707725, 65653346225760, 67019921100969, 81321742742208
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			96320542 * 96320547 = 92776472//92776474, where // denotes
concatenation.
		

Crossrefs

A116311 Numbers k such that k*(k+7) gives the concatenation of two numbers m and m+3.

Original entry on oeis.org

8445, 8810, 69125298546226023971, 69855225553525294044, 74604750601020544519, 75334677608319814592, 92496418993920707746, 93226346001219977819, 97975871048715228294, 98705798056014498367
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8810 * 8817 = 7767//7770, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.